ABOUT ALMOST GEODESICS CURVES

Olga Belova¹ Josef Mikeš² Karl Strambach³

¹ Immanuel Kant Baltic Federal University, Kaliningrad, Russia

² Palacky University, Olomouc, Czech Republic

³ Erlangen-Nürnberg University, Erlangen, Germany

Vrnjačka Banja, Serbia, May 20–23, 2018

Abstract

We determine in \mathbb{R}^n the form of curves \mathcal{C} for which also any image under an (n-1)-dimensional algebraic torus is an almost geodesic with respect to an affine connections ∇ with constant coefficients and calculate explicitly the components of ∇ .

1. Introduction

Geodesics are classical objects of differential geometry. They are invariants for geodesic mappings.

E. Beltrami has shown that a differentiable curve is a local geodesic with respect to an affine connection ∇ precisely if it is a solution of an Abelian differential equation with coefficients which are functions of the components of ∇ .

Almost geodesics curves and mappings have been introduced in 1963 by N.S. Sinyukov as generalizations of geodesic curves and mappings.

2. Introduction

The explicit calculation of the form of curves $\mathcal C$ in the n-dimensional real space $\mathbb R^n$ which are geodesics or almost geodesics with respect to an affine connection ∇ is not achievable even in the case if the components Γ^h_{ij} of ∇ are constant. But we can do it if we suppose that with $\mathcal C$ also all images of $\mathcal C$ under a real (n-1)-dimensional algebraic torus are also almost geodesics.

The determination of $\mathcal C$ becomes an algebraic problem, namely a problem of polynomial identities.

We consider a curve C homeomorphic to \mathbb{R} which is a closed subset of \mathbb{R}^n and has the form

$$C = (t, f_2(t), \dots, f_n(t)), \quad t \in \mathbb{R},$$
 (1)

where $f_i(t)$: $\mathbb{R} \to \mathbb{R}$, i = 2, ..., n, are three times differentiable non-constant functions.

The system

$$\mathfrak{X}(\mathcal{C}) = \Big\{ \Big(t+c_1, b_2 f_2(t) + c_2, \dots, b_n f_n(t) + c_n\Big), \quad t \in \mathbb{R} \Big\}, \quad (2)$$

where $b_i \neq 0$, $c_i \in \mathbb{R}$, is a set of imagines of C.

- ✓ If every curve of $\mathfrak{X}(\mathcal{C})$ is a geodesic with respect to an affine connection ∇ with constant coefficients Γ^h_{ij} , then the derivatives $f'_i(t)$ of the functions $f_i(t)$ are solutions of the first order linear ordinary differential equations.
- ✓ If every curve of $\mathfrak{X}(\mathcal{C})$ is an almost geodesic with respect to ∇ , then the derivatives $f_i'(t)$ are solutions of harmonic oscillator equations.
- ✓ If $\mathfrak{X}(\mathcal{C})$ consists of Euclidean lines which are geodesic with respect to ∇ , then at the most Γ^1_{11} may be different from 0. In contrast to this
- \checkmark if $\mathfrak{X}(\mathcal{C})$ consists of Euclidean lines then there is huge quantity of non-trivial connections ∇ such that the lines of $\mathfrak{X}(\mathcal{C})$ are almost geodesic with respect to ∇ .

We apply results of differential geometry only for the n-dimensional space \mathbb{R}^n , where global coordinates exist.

The components

$$\Gamma_{ij}^h$$
, $h, i, j \in \{1, 2, \ldots, n\}$,

of any affine connection ∇ can be written in unique way in these coordinates.

6

Let

$$\ell = (t + c_1, b_2 f_2(t) + c_2, \dots, b_n f_n(t) + c_n), \ t \in \mathbb{R},$$
 (3)

be a curve of $\mathfrak{X}(\mathcal{C})$.

Then

$$\dot{\ell} = \left(1, b_2 f_2'(t), \dots, b_n f_n'(t)\right),$$

$$\ddot{\ell} = \left(0, b_2 f_2''(t), \dots, b_n f_n''(t)\right).$$
(4)

Definition

By a *geodesic* of ∇ we mean a piecewise C^2 -curve $\gamma \colon I \to \mathbb{R}^n$ satisfying

$$\nabla_{\dot{\gamma}}\dot{\gamma} = \varrho \cdot \dot{\gamma},\tag{5}$$

where $\varrho: I \to \mathbb{R}$ is a continuous function, $I \subset \mathbb{R}$ is an open interval.

Using the components of $\boldsymbol{\nabla}$ the system of differential equations for geodesics has the form

$$\ddot{\gamma}^h + \sum_{i,j=1}^n \Gamma_{ij}^h \dot{\gamma}^i \dot{\gamma}^j = \varrho(t) \dot{\gamma}^h, \qquad h \in \{1, 2, \dots, n\},$$
 (6)

where Γ^h_{ii} are constant coefficients of an affine connections ∇ .

According to the (6) a curve ℓ of $\mathfrak{X}(\mathcal{C})$ is a geodesic with respect to ∇ if and only if

$$\ddot{\ell}_h + \sum_{i,j=1}^n \Gamma_{ij}^h \dot{\ell}_i \dot{\ell}_j = \varrho(t) \ \dot{\ell}_h, \quad h = 1, \dots, n. \tag{7}$$

From this for h=1 we obtain $\varrho(t)$ and for $h=2,\ldots,n$ after substitution of the function $\varrho(t)$ we get equations (8)

$$\Gamma_{11}^{h} + b_{h} \cdot \left(f_{h}''(t) + 2\Gamma_{1h}^{h} \cdot f_{h}'(t) \right) + b_{h}^{2} \cdot \left(\Gamma_{hh}^{h} - 2\Gamma_{1h}^{1} \right) (f_{h}'(t))^{2} - b_{h}^{3} \cdot \Gamma_{hh}^{1} (f_{i}'(t))^{3} + 2\sum_{\substack{i=2\\i\neq h}}^{n} \Gamma_{1i}^{h} \ b_{i} f_{i}'(t) + \sum_{\substack{i=2\\i\neq h}}^{n} \Gamma_{ii}^{h} \ b_{i}^{2} (f_{i}'(t))^{2} + 2\sum_{\substack{i,j=2\\i\neq j\neq h}}^{n} \Gamma_{ij}^{h} \ b_{i} b_{j} f_{i}'(t) \cdot f_{j}'(t) - 2\sum_{\substack{i=2\\i\neq h}}^{n} \Gamma_{ij}^{1} \ b_{i} b_{h} \ f_{h}'(t) \cdot f_{i}'(t) - \sum_{\substack{i=2\\i\neq h}}^{n} \Gamma_{ii}^{1} \ b_{i}^{2} b_{h} \ f_{h}'(t) \cdot (f_{i}'(t))^{2} - 2\sum_{\substack{i,j=2\\i\neq h}}^{n} \Gamma_{ij}^{1} \ b_{i} b_{j} b_{h} \ f_{h}'(t) \cdot f_{i}'(t) \cdot f_{j}'(t) = 0. \tag{8}$$

This identity is a polynomial expression in b_i , b_i^2 , b_i^3 , b_ib_j $(i \neq j)$, b_ib_h $(i \neq h)$, $b_i^2b_h$ $(i \neq h)$, $b_ib_jb_h$ $(i \neq j)$ for i, h = 2, ..., n. Since all the variables are independent, their coefficients must be zero.

Using it we get some relations from which it follows theorem

Theorem

Any curve of $\mathfrak{X}(\mathcal{C})$ is a geodesic with respect to a connection ∇ with constant coefficients $\{\Gamma_{ij}^h\}$ if and only if for $h=2,\ldots,n$ the function $f_h(t)$ has the form

$$f_h(t) = \alpha_h e^{-2\Gamma_{1h}^h \cdot t} + \beta_h \quad (\alpha_h \neq 0, \beta_h \in \mathbb{R})$$
 (9)

for all $2 \le h \le n$.

The only components of ∇ which can be different from 0 are Γ^1_{11} and $\Gamma^h_{hh} = 2\Gamma^h_{1h}$.

Definition

By an *almost geodesic* of an affine connection ∇ we mean a piecewise C^3 -curve $\gamma \colon I \to \mathbb{R}^n$ satisfying

$$\nabla_{\dot{\gamma}}(\nabla_{\dot{\gamma}}\dot{\gamma}) = \varrho \cdot \dot{\gamma} + \sigma \cdot \nabla_{\dot{\gamma}}\dot{\gamma},\tag{10}$$

where ϱ , σ : $I \to \mathbb{R}$ are continuous functions, $I \subset \mathbb{R}$ is an open interval.

Using the components of ∇ the system of differential equations for almost geodesics has the form

$$\ddot{\gamma}^h + \sum_{i,j,k=1}^n \left(\partial_k \Gamma^h_{ij} + \Gamma^\ell_{ij} \Gamma^h_{\ell k} \right) \dot{\gamma}^i \dot{\gamma}^j \dot{\gamma}^k + 2 \sum_{i,j=1}^n \Gamma^h_{ij} \ddot{\gamma}^i \dot{\gamma}^j + \sum_{i,j=1}^n \Gamma^h_{ij} \dot{\gamma}^i \ddot{\gamma}^j =$$

$$\varrho(t)\cdot\dot{\gamma}^h + \sigma(t)\cdot\left(\ddot{\gamma}^h + \sum_{i,j=1}^n \Gamma^h_{ij}\dot{\gamma}^i\dot{\gamma}^j\right). \tag{11}$$

A curve ℓ of $\mathfrak{X}(\mathcal{C})$ is an almost geodesic with respect to ∇ if and only if we have

$$\ddot{\ell}^h + \sum_{i,j,k=1}^n \Gamma^{\ell}_{ij} \Gamma^h_{\ell k} \, \dot{\ell}^i \dot{\ell}^j \dot{\ell}^k + 2 \sum_{i,j=1}^n \Gamma^h_{ij} \ddot{\ell}^i \dot{\ell}^j + \sum_{i,j=1}^n \Gamma^h_{ij} \dot{\ell}^i \ddot{\ell}^j =$$

$$\varrho(t)\cdot\dot{\ell}^h + \sigma(t)\cdot\left(\ddot{\ell}^h + \sum_{i,j=1}^n \Gamma^h_{ij}\dot{\ell}^i\dot{\ell}^j\right). \tag{12}$$

From this for h=1 we obtain $\varrho(t)$ and for $h=2,\ldots,n$ after substitution of the function $\varrho(t)$ we get equations (13)

$$b_{h} f_{h}'''(t) + \sum_{m=1}^{n} \Gamma_{m1}^{h} \Gamma_{11}^{m} + \sum_{i=2,m=1}^{n} (\Gamma_{mi}^{h} \Gamma_{11}^{m} + \Gamma_{m1}^{h} \Gamma_{i1}^{m} + \Gamma_{m1}^{h} \Gamma_{1i}^{m}) b_{i} f_{i}'(t) + \sum_{i,j=2,m=1}^{n} (\Gamma_{mi}^{h} \Gamma_{j1}^{m} + \Gamma_{mi}^{h} \Gamma_{jj}^{m} + \Gamma_{m1}^{h} \Gamma_{ij}^{m}) b_{i} b_{j} f_{i}'(t) f_{j}'(t) + \sum_{i,j,k=2,m=1}^{n} \Gamma_{mi}^{h} \Gamma_{jk}^{m} b_{i} b_{j} b_{k} f_{i}'(t) f_{j}'(t) f_{k}'(t) + \sum_{i,j=2}^{n} (2\Gamma_{i1}^{h} + \Gamma_{1i}^{h}) b_{i} f_{i}''(t) + \sum_{i,j=2}^{n} (2\Gamma_{ij}^{h} + \Gamma_{ji}^{h}) b_{i} b_{j} f_{i}''(t) f_{j}'(t) - b_{h} f_{h}'(t) \left(\sum_{m=1}^{n} \Gamma_{m1}^{1} \Gamma_{11}^{m} + \sum_{i=2,m=1}^{n} (\Gamma_{mi}^{1} \Gamma_{11}^{m} + \Gamma_{m1}^{1} \Gamma_{ij}^{m}) b_{i} b_{j} f_{i}''(t) f_{j}'(t) + \sum_{i,j=2,m=1}^{n} (\Gamma_{mi}^{1} \Gamma_{j1}^{m} + \Gamma_{mi}^{1} \Gamma_{ij}^{m}) b_{i} b_{j} f_{i}'(t) f_{j}'(t) + \sum_{i,j=2,m=1}^{n} (\Gamma_{mi}^{1} \Gamma_{jk}^{m} b_{i} b_{j} b_{k} f_{i}'(t) f_{j}'(t) f_{k}'(t) + \sum_{i,j=2,m=1}^{n} (2\Gamma_{i1}^{1} + \Gamma_{1i}^{1}) b_{i} f_{i}''(t) + \sum_{i,j=2}^{n} (2\Gamma_{ij}^{1} + \Gamma_{ji}^{1}) b_{i} b_{j} f_{i}''(t) f_{j}'(t) \right) = \sigma(t) \cdot \left(\Gamma_{11}^{h} - \Gamma_{11}^{1} + 2\sum_{i=2}^{n} (\Gamma_{1i}^{h} + \Gamma_{i1}^{h} - \Gamma_{1i}^{1} - \Gamma_{1i}^{1}) b_{i} f_{i}'(t) + \sum_{i,j=2}^{n} (\Gamma_{ij}^{h} - \Gamma_{ij}^{1}) b_{i} b_{j} f_{i}'(t) f_{j}'(t) \right).$$

We can determine σ only if not all coefficients in (13) are zero, we treat first the case that for $h \ge 2$ one has

$$\Gamma_{i1}^h + \Gamma_{1i}^h = \Gamma_{i1}^1 + \Gamma_{1i}^1, \quad i \ge 1; \qquad \Gamma_{ij}^h = \Gamma_{ij}^1, \quad i, j \ge 2.$$
 (14)

Since identity (13) is a polynomial expression in b_i , b_ib_j , $b_ib_jb_k$, $b_hb_ib_jb_k$ (2 $\leq h, i, j, k \leq n$) and all the variables are independent, their coefficients must be zero.

Using (13) and (14) we obtain conditions, from which the next theorem follows.

Theorem

Let $\mathcal C$ be a curve of the form (1) and ∇ be a connection with constant coefficients $\{\Gamma_{ij}^h\}$ satisfying relations (14). Then any curve ℓ of $\mathfrak X(\mathcal C)$ is almost geodesic with respect to ∇ if and only if ℓ is represented by the functions f_h having the following forms

- $f_h(t) = C_h t^2 + D_h t + E$, where $C_h, D_h, E \in \mathbb{R}$, C_h, D_h not both zero and $\beta_h = 0$,
- $f_h(t) = C_h e^{\sqrt{-\beta_h} t} D_h e^{-\sqrt{-\beta_h} t}$, where $C_h, D_h \in \mathbb{R}$, not both zero and $\beta_h < 0$,
- $f_h(t) = C_h \sin(\sqrt{\beta_h} t) D_h \cos(\sqrt{\beta_h} t)$, where $C_h, D_h \in \mathbb{R}$, not both zero and $\beta_h > 0$,

where

$$\beta_h = \sum_{m=1}^n \left(\Gamma_{mh}^h \left(\Gamma_{11}^1 + 2(\Gamma_{h1}^1 + \Gamma_{1h}^1) + 6\Gamma_{hh}^1 \right) - \Gamma_{mh}^1 \left(2(\Gamma_{h1}^1 + \Gamma_{1h}^1) + \Gamma_{11}^1 \right) + \Gamma_{mh}^h \left(\Gamma_{h1}^1 + \Gamma_{1h}^1 + \Gamma_{hh}^1 \right) - \Gamma_{mh}^1 \left(\Gamma_{11}^1 + \Gamma_{hh}^1 + \Gamma_{1h}^1 + 2\Gamma_{hh}^1 \right) \right).$$

Let α and i_0, j_0 such that for these indices we have

$$\Gamma_{11}^{\alpha} \neq \Gamma_{11}^{1}$$

or

$$\Gamma^{\alpha}_{i_0 1} + \Gamma^{\alpha}_{1 i_0} \neq \Gamma^{1}_{i_0 1} + \Gamma^{1}_{1 i_0},$$
 (15)

or

$$\Gamma^{\alpha}_{i_0j_0}\neq\Gamma^1_{i_0j_0},\quad i_0,j_0\geq 2.$$

In this case the coefficient of σ is not identically zero, and we can compute σ .

- $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$ and $\Gamma^h_{i1} + \Gamma^h_{1i} = \Gamma^1_{i1} + \Gamma^1_{1i}$ for all $2 \le i \le n$, but there exists an α and i_0, j_0 such that $\Gamma^\alpha_{i_0j_0} \ne \Gamma^1_{i_0j_0}$.
- ② $\Gamma_{11}^h = \Gamma_{11}^1$ for all $2 \le h \le n$, but there exists an α and i_0 such that $\Gamma_{i_01}^{\alpha} + \Gamma_{1i_0}^{\alpha} \ne \Gamma_{i_01}^1 + \Gamma_{1i_0}^1$.

- $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$ and $\Gamma^h_{i1} + \Gamma^h_{1i} = \Gamma^1_{i1} + \Gamma^1_{1i}$ for all $2 \le i \le n$, but there exists an α and i_0, j_0 such that $\Gamma^\alpha_{i_0j_0} \ne \Gamma^1_{i_0j_0}$.
- ② $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$, but there exists an α and i_0 such that $\Gamma^\alpha_{i_01} + \Gamma^\alpha_{1i_0} \ne \Gamma^1_{i_01} + \Gamma^1_{1i_0}$.
- ③ There exists an α and i_0, j_0 such that $\Gamma^{\alpha}_{i_0j_0} \neq \Gamma^1_{i_0j_0}$, but $2\Gamma^{\alpha}_{i_01} + \Gamma^1_{1i_0} = 0$.

- $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$ and $\Gamma^h_{i1} + \Gamma^h_{1i} = \Gamma^1_{i1} + \Gamma^1_{1i}$ for all $2 \le i \le n$, but there exists an α and i_0, j_0 such that $\Gamma^\alpha_{i_0j_0} \ne \Gamma^1_{i_0j_0}$.
- ② $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$, but there exists an α and i_0 such that $\Gamma^\alpha_{i_01} + \Gamma^\alpha_{1i_0} \ne \Gamma^1_{i_01} + \Gamma^1_{1i_0}$.
- **3** There exists an α and i_0, j_0 such that $\Gamma^{\alpha}_{i_0j_0} \neq \Gamma^1_{i_0j_0}$, but $2\Gamma^{\alpha}_{i_01} + \Gamma^1_{1i_0} = 0$.
- ① There exists an α and i_0, j_0 such that $\Gamma^{\alpha}_{i_0 j_0} \neq \Gamma^1_{i_0 j_0}$ and $2\Gamma^{\alpha}_{i_0 1} + \Gamma^1_{1i_0} \neq 0$.

- $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$ and $\Gamma^h_{i1} + \Gamma^h_{1i} = \Gamma^1_{i1} + \Gamma^1_{1i}$ for all $2 \le i \le n$, but there exists an α and i_0, j_0 such that $\Gamma^\alpha_{i_0j_0} \ne \Gamma^1_{i_0j_0}$.
- ② $\Gamma^h_{11} = \Gamma^1_{11}$ for all $2 \le h \le n$, but there exists an α and i_0 such that $\Gamma^\alpha_{i_01} + \Gamma^\alpha_{1i_0} \ne \Gamma^1_{i_01} + \Gamma^1_{1i_0}$.
- **3** There exists an α and i_0, j_0 such that $\Gamma^{\alpha}_{i_0j_0} \neq \Gamma^1_{i_0j_0}$, but $2\Gamma^{\alpha}_{i_01} + \Gamma^1_{1i_0} = 0$.
- There exists an α and i_0, j_0 such that $\Gamma^{\alpha}_{i_0 j_0} \neq \Gamma^1_{i_0 j_0}$ and $2\Gamma^{\alpha}_{i_0 1} + \Gamma^1_{1i_0} \neq 0$.

Here we consider the case, when

$$\Gamma^{h}_{11} = \Gamma^{1}_{11} \text{ for all } 2 \le h \le n$$
and
$$\Gamma^{h}_{i1} + \Gamma^{h}_{1i} = \Gamma^{1}_{i1} + \Gamma^{1}_{1i} \text{ for all } 2 \le i \le n,$$
(16)

but there exists an α and i_0 , j_0 such that

$$\Gamma^{\alpha}_{i_0j_0} \neq \Gamma^1_{i_0j_0}. \tag{17}$$

$\mathsf{Theorem}$

Let $\mathcal C$ be a curve of the form (1) and ∇ be a connection with constant coefficients $\{\Gamma_{ij}^h\}$ satisfying relations (16), (17). Then any curve ℓ of $\mathfrak X(\mathcal C)$ is almost geodesic with respect to ∇ if and only if ℓ is represented by the functions f_h , f_α , f_{i_0} having the following forms

$f_h(t)$

- $f_h(t) = \hat{C}_h e^{\lambda_1^h t} + \hat{D}_h e^{\lambda_2^h t}$, where $\hat{C}_h, \hat{D}_h \in \mathbb{R}$, \hat{C}_h, \hat{D}_h are not both zero and $a_h^2 4c_h > 0$,
- $f_h(t) = (\tilde{C}_h t + \tilde{D}_h) e^{\frac{-a_h}{2}t}$, where $\tilde{C}_h, \tilde{D}_h \in \mathbb{R}$, \tilde{C}_h, \tilde{D}_h are not both zero and $a_h^2 4c_h = 0$,
- $f_h(t) = e^{-a_h t/2} \left(\bar{C}_h cos \frac{\sqrt{a_h^2 4c_h}}{2} t + \bar{D}_h sin \frac{\sqrt{a_h^2 4c_h}}{2} t \right)$, where $\bar{C}_h, \bar{D}_h \in \mathbb{R}$, \bar{C}_h, \bar{D}_h are not both zero and $a_h^2 4c_h < 0$

with

$$a_h = 2\Gamma_{h1}^h + \Gamma_{1h}^h, \quad c_h = S_{h11h} - T_{1111},$$

$$\lambda_1^h = \frac{-a_h - \sqrt{a_h^2 - 4c_h}}{2}, \quad \lambda_2^h = \frac{-a_h + \sqrt{a_h^2 - 4c_h}}{2};$$

$f_{\alpha}(t)$

- $f_{\alpha}(t)=C_{\alpha}t^2+D_{\alpha}t+E$, where $C_{\alpha},D_{\alpha},E\in\mathbb{R}$, C_{α},D_{α} are not both zero and $\gamma_{\alpha}=0$,
- $f_{\alpha}(t) = \hat{C}_{\alpha} e^{\sqrt{-\gamma_{\alpha}} t} \hat{D}_{\alpha} e^{-\sqrt{-\gamma_{\alpha}} t}$, where $\hat{C}_{\alpha}, \hat{D}_{\alpha} \in \mathbb{R}$, $\hat{C}_{\alpha}, \hat{D}_{\alpha}$ are not both zero and $\gamma_{\alpha} < 0$,
- $f_{\alpha}(t) = \hat{C}_{\alpha} \sin(\sqrt{\gamma_{\alpha}} t) \hat{D}_{\alpha} \cos(\sqrt{\gamma_{\alpha}} t)$, where $\hat{C}_{\alpha}, \hat{D}_{\alpha} \in \mathbb{R}$, $\hat{C}_{\alpha}, \hat{D}_{\alpha}$ are not both zero and $\gamma_{\alpha} > 0$

with

$$\gamma_{\alpha} = \frac{\left(\Gamma_{i_0j_0}^{\alpha} - \Gamma_{i_0j_0}^{1}\right)\left(T_{h\alpha ij} + T_{h\alpha ji} + T_{hi\alpha j} + T_{hij\alpha} + T_{hj\alpha i} + T_{hji\alpha}\right)}{\Gamma_{ij}^{1} + \Gamma_{ji}^{1} - \Gamma_{ij}^{h} - \Gamma_{ji}^{h}} - T_{1111};$$

$f_{i_0}(t)$

- $f_{i_0}(t) = \hat{C}_{i_0} e^{\lambda_1^{i_0}t} + \hat{D}_{i_0} e^{\lambda_2^{i_0}t}$, where $\hat{C}_{i_0}, \hat{D}_{i_0} \in \mathbb{R}$, $\hat{C}_{i_0}, \hat{D}_{i_0}$ are not both zero and $a_{i_0}^2 4c_{i_0} > 0$,
- $f_{i_0}(t)=(\tilde{C}_{i_0}t+\tilde{D}_{i_0})e^{-\frac{a_{i_0}}{2}t}$, where $\tilde{C}_{i_0},\tilde{D}_{i_0}\in\mathbb{R},\ \tilde{C}_{i_0},\tilde{D}_{i_0}$ are not both zero and $a_{i_0}^2-4c_{i_0}=0$,
- $f_{i_0}(t) = e^{-a_{i_0}t/2} \left(\bar{C}_{i_0} cos \frac{\sqrt{a_{i_0}^2 4c_{i_0}}}{2} t + \bar{D}_{i_0} sin \frac{\sqrt{a_{i_0}^2 4c_{i_0}}}{2} t \right)$, where $\bar{C}_{i_0}, \bar{D}_{i_0} \in \mathbb{R}$, $\bar{C}_{i_0}, \bar{D}_{i_0}$ are not both zero and $a_{i_0}^2 4c_{i_0} < 0$

with
$$a_{i_0} = 2\Gamma^{i_0}_{i_01} + \Gamma^{i_0}_{1i_0}$$
,
$$c_{i_0} = \frac{(\Gamma^{i_0}_{i_0j_0} - \Gamma^1_{i_0j_0})(T_{hi_0ij} + T_{hi_0ji} + T_{hii_0j} + T_{hiji_0} + T_{hji_0i} + T_{hjii_0})}{\Gamma^1_{ij} + \Gamma^1_{ji} - \Gamma^h_{ij} - \Gamma^h_{ji}} + S_{i_011i_0} - T_{1111},$$

$$\lambda_1^{i_0} = rac{-a_{i_0} - \sqrt{a_{i_0}^2 - 4c_{i_0}}}{2}, \quad \lambda_2^{i_0} = rac{-a_{i_0} + \sqrt{a_{i_0}^2 - 4c_{i_0}}}{2};$$
 $S_{ABCD} \stackrel{def}{=} \sum_{m=1}^n \left(\Gamma_{mD}^A \Gamma_{BC}^m + \Gamma_{mB}^A (\Gamma_{DC}^m + \Gamma_{CD}^m)\right),$

$$T_{ABCD} \stackrel{\text{def}}{=} \sum_{m=1}^{n} \Gamma_{mB}^{A} \Gamma_{CD}^{m}.$$

We also found the relations which the components $\{\Gamma_{ij}^h\}$ of affine connection ∇ satisfy.