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Abstract

An iterative algorithm for estimating the Moore-Penrose generalized inverse is de-
veloped. The main motive for the construction of algorithm is simultaneous usage of
Penrose equations (2) and (4). Convergence properties of the introduced method are
considered as well as their first-order and the second-order error terms. Numerical
experience is also presented.
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1 Introduction

Let Cm×n and Cm×n
r denote the set of all complex m× n matrices and all complex m× n

matrices of rank r, respectively. As usual, I denotes the unit matrix of an appropriate
order. By A∗, R(A), rank(A) and N (A) we denote the conjugate transpose, the range, the
rank and the null space of A ∈ Cm×n, respectively. By PR(A) is denoted the orthogonal
projection of Rm onto R(A). Also for A ∈ Cn×n

r we denote its eigenvalues by

λ1(A) ≥ · · · ≥ λr(A) > λr+1(A) = · · · = λn(A) = 0. (1.1)

The Moore-Penrose inverse of A ∈ Cm×n, denoted by A†, is the unique matrix satisfying
the next Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.
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The most frequently used iterative method for approximating the inverse A−1 is the
famous Newton’s method

Vk+1 = Vk + Vk(I −AVk) = Vk(2I −AVk), (1.2)

originated in [11]. Schultz in [11] found that the eigenvalues of I−AV0 must have magnitudes
less than 1 to ensure the convergence. Since the residuals Rk = I − AVk in each step
(1.2) satisfy ∥Rk+1∥ ≤ ∥A∥∥Rk∥2, Newton method is the second order iterative method
[3]. Similarly, in [8] the relation ∥AEm+1∥ ≤ ∥AEm∥2 is verified for residuals of the form
Em = Vm −A−1.

Ben-Israel in [1, 2, 3] used equation (1.2) and the starting value

X0 = αA∗, (1.3)

where α satisfies

0 < α < 2/λ1(AA∗). (1.4)

Ben-Israel and Cohen [3] obtained additional results, still using equation (1.2), and derived
an iterative approximation of the projector AA†. Newton’s method is later investigated in
[9].

Ben-Israel and Chanes in [4] proved that the sequence

Yk = α

k∑
i=0

A∗(I − αAA∗)i, k = 0, 1, . . . (1.5)

converges to A† under the assumption (1.4).

The iterative process (1.2) is generalized by the iterative scheme

Uk+1 = Uk(2PR(A) −AUk), (1.6)

which converges to A† [1, 2].

The iterative method for computing the Moore-Penrose inverse of the form

Zk+1 = PZk +Q, Z1 = Q, (1.7)

where

P = I − βA∗A, Q = βA∗, (1.8)

is powered by the successive matrix squaring (SMS) of an appropriate 2 × 2 block matrix
in [5]. By direct verification it is easy to verify

Zk+1 =

k∑
i=0

P iQ.
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Ben-Israel in [3] proved Vk = Y2k−1, while Chen et al. in [5] shown Zk = Vk. Tanabe in
[13] applied the iterative scheme of the same form to the set of reflexive generalized inverses
which obey only the Penrose equations (1) and (2). In the papers of Y. Wei [14] and Y.
Wei et al. [15] the authors considered two variants of SMS algorithm which approximate
the Drazin inverse and the weighted Moore-Penrose inverse of A, respectively. An SMS
algorithm to approximate an outer generalized inverse with prescribed range and null space
of a given matrix A ∈ Cm×n

r is derived in [12].

2 Motivation

Householder in [7] defined successive improvements of a matrix X to solve the matrix
equation AX = M , for nonsingular matrix A, using the recurrence relation

Xk+1 = Xk + Ck(M −AXk). (2.1)

A particular case of the general iterative scheme (2.1) is defined by the choice M = I and
Ck = Xk, which turns into the Newton’s iterative method (1.2). It is not difficult to verify
that the iterations (1.2) are based on the usage of Penrose equation (2).

Later in [3], process (1.5) is rewritten as

Yk+1 = Yk(I − αAA∗) + αA∗ = Yk + α(I − YkA)A
∗, (2.2)

which indicates that it is based on the usage of the Penrose equations (1) and (4). Similarly,
it is easy to verify that the method (1.7), (1.8) is founded on the usage of Penrose equations
(1) and (3).

Pierce in [10] investigated some likely candidates for successive improvements toward
A† using some of the matrix equations (1)–(4). These methods are summarized in Table 1
and restated from [10] for the sake of completeness.

If L is the desired limit matrix and Xk is the k-th estimate of L, then the convergence
properties of the examined algorithm can be studied with the aid of the error matrix Ek =
Xk − L. If an iterative algorithm is expressible as a simple matrix formula, Ek+1 is a sum
of several terms:

- zero-order term consisting of a matrix which does not depend upon Ek,

- one or more first-order matrix terms in which Ek or its conjugate transpose E
∗
k appears

only once,

- higher-order terms in which Ek or E∗
k appears at least twice.

All suitable algorithms have a zero-order term equal to 0. Hence the first-order terms
determine the terminal convergence properties [10].
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Name Formula for Xk+1 error1

α Xk(2I −AXk) E(2I −AA†)−A†AE
β XkAXk EAA† +A†AE
γ Xk(AXk)

∗ EAA† +A+ E∗A∗

δ (XkA)
∗Xk A∗E∗A† +A†AE

ε (γ + δ − β) A†E∗A∗ +A∗E∗A†

ζ XkAXk(2I −AXk) EAA† +A†AE(2I −AA†)−A†AE
η (ε then α) 0
θ XkAXk(2I −AXkAXk) EAA† − 2A†AEAA† +A†AE

Table 1. Iterative methods from [10]

The calculation of the first-order terms error1 begins by substituting Xk = A† + E
and expanding the resulting formula. To produce these formulas, it is necessary to use
the Hermitian property, some Penrose equations, or some simple algebraic transformations
[10]. It is not difficult to verify that Algorithm β from Table 1 is based upon the usage of
Equation (2). Algorithm γ uses equations (2) and (3), while Algorithm δ uses equations
(2) and (4). Algorithm ζ uses the matrix AUk as the approximation of PR(A) in (1.6).

In the present paper we present an iterative algorithm for computing the Moore-Penrose
generalized inverse. The algorithm is based on the usage of Penrose equations (2) and (4).
Conditions for the convergence of the method are investigated as well as the first-order and
the second-order terms in error estimates. A comparison with similar iterative algorithms
is presented. Numerical results are given in the last section.

3 The iterative method

Assume that A ∈ Cm×n and X = A† ∈ Cn×m. We start from the equations (2), (4) and
obtain

X∗ = (XAX)∗ = X∗(XA)∗ = X∗XA.

Hence, for arbitrary β ∈ R holds

X∗ = X∗ − β(X∗XA−X∗) = X∗(I − βXA) + βX∗,

or equivalently
X = (I − βXA)∗X + βX.

From the last equation we can formulate the following iterative method

Xk+1 = (I − βXkA)∗Xk + βXk. (3.1)

Assume that the starting value of the iterative method (3.1) is

X0 = βA∗, (3.2)

for an appropriate real number β.

The following lemma will be useful in further considerations.
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Lemma 3.1. For the sequence Xk generated by the iterative scheme (3.1), (3.2) the follow-
ing holds

XkA = (XkA)∗, XAXk = Xk, XkAX = Xk, k ≥ 0. (3.3)

Proof. We use mathematical induction. For k = 0 we have X0 = βA∗ and all statements in
(3.3) hold by direct verification. Under the assumption that the theorem is true for some
integer k the following transformations are derived as consequences:

(Xk+1A)
∗ = ((I − βXkA)

∗XkA+ βXkA)
∗

= (XkA)
∗(I − βXkA) + β(XkA)

∗

= XkA(I − βXkA) + βXkA

= (I − βXkA)
∗XkA+ βXkA

= Xk+1A.

In this way, we proved that the first statement of the lemma holds for k + 1. Similarly we
prove the second statement as follows

XAXk+1 = XA(I − βXkA)
∗Xk + βXAXk

= XAXk − βXAXkAXk + βXAXk

= Xk − βXkAXk + βXk

= Xk+1.

Third statement can be verified in a similar manner:

Xk+1AX = (I − βXkA)
∗XkAX + βXkAX = (I − βXkA)

∗Xk + βXk = Xk+1.

This completes the proof of the lemma.

From Lemma 3.1 follows that equation (3.1) can be written in the following form

Xk+1 = (I − βXkA)Xk + βXk = (1 + β)Xk − βXkAXk. (3.4)

Now we are ready to prove that the matrix sequence Xk defined by the starting value
X0 = βA∗ and the iterative rule (3.1), converges to the Moore-Penrose inverse X = A†.

Theorem 3.1. Iterative method (3.4) with the starting value defined in (3.2) converges to
the Moore-Penrose inverse X = A† under the assumptions

∥(X0 −X)A∥ < 1, 0 < β ≤ 1. (3.5)

For β < 1 the method has a linear convergence, while for β = 1 its convergence is quadratic.
The first-order and the second-order terms, corresponding to the error estimation of (3.4)
are equal to:

error1 = (1− β)Ek, error2 = −βEkAEk, (3.6)

respectively.
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Proof. For the first part of the theorem, it suffices to verify that ∥Xn − X∥ → 0 when
n → +∞. Using the properties of the Moore-Penrose inverse X and results of Lemma 3.1
we obtain

∥Xk+1 −X∥ = ∥Xk+1AX −XAX∥ ≤ ∥Xk+1A−XA∥∥X∥.

Using (3.3) and (3.4) we have

Xk+1A−XA = (1 + β)XkA− βXkAXkA−XA

= −(βXkA−XA)(XkA−XA).

Later, taking into account

βXkA−XA = β(XkA−XA)− (1− β)XA,

and using (3.3) we obtain

Xk+1A−XA = −β(XkA−XA)2 + (1− β)(XkA−XA).

The sequence of error matrices Ek defined by Ek = Xk −X satisfy the following recurrence
relation

Ek+1A = −β(EkA)
2 + (1− β)EkA. (3.7)

Let tk = ∥EkA∥. Our goal is to show that tk → 0 when k → +∞. By the mathematical
induction we prove tk < 1. Condition of the theorem implies t0 = ∥(X0 −X)A∥ < 1. From
equation (3.7) and the inductive hypothesis tk < 1 we obtain

tk+1 ≤ βt2k + (1− β)tk < βtk + (1− β)tk = tk. (3.8)

Last completes the proof by induction since tk+1 < tk < 1. Moreover, equation (3.8)
implies tk+1 < tk for k = 0, 1, . . ., i.e. tk is decreasing sequence. Since tk ≥ 0 is bounded,
we conclude that tk is convergent and tk → t when k → +∞. Moreover holds 0 ≤ t < 1.
Again using (3.8) we obtain additionally

t ≤ βt2 + (1− β)t.

The last inequality implies that either t ≥ 1 or t = 0 and hence we conclude that t = 0.
This completes the proof that tk → 0 when k → +∞.

Now, since Lemma 3.1 implies ∥Xk−X∥ ≤ tk∥X∥, we conclude Xk → X when k → +∞.
This proves the convergence of method (3.1) and the first part of the theorem.

Putting Xk = X +Ek in (3.4) it is not difficult to verify that the error matrix Ek+1 can
be expressed in the form

Ek+1 = (1 + β)Ek − βXAEk − βEkAX − βEkAEk,

which implies
error1 = (1 + β)Ek − βXAEk − βEkAX,

error2 = −βEkAEk.



Iterative method for computing Moore-Penrose inverse... 7

Using Ek = Xk −X and Lemma 3.1 we obtain

error1 = (1 + β)(Xk −X)− βXA(Xk −X)− β(Xk −X)AX

= (1− β)(Xk −X) = (1− β)Ek.

This confirms statements in (3.6). Obviously error1 vanishes if and only if β = 1, while
error2 is always non-zero. Hence, the method has linear convergence for β ̸= 1 and quadratic
for β = 1. This completes the proof of the theorem.

From Theorem 3.1 we see that the convergence of the method (3.4) requires the condition
∥(βA∗ −X)A∥ < 1. We need to write the previous condition in an equivalent form which
does not contain the Moore-Penrose inverse X. The following well-known result (Lemma
3.2) will be used.

Lemma 3.2. [6] Let M ∈ Cn×n and ε > 0 be given. There is at least one matrix norm ∥ · ∥
such that

ρ(M) ≤ ∥M∥ ≤ ρ(M) + ϵ, (3.9)

where ρ(M) = max{|λ1(M)|, . . . , |λn(M)|} denotes the spectral radius of M .

According to Lemma 3.2, necessary and sufficient condition for convergence of the iter-
ative method is ρ((βA∗ −X)A) < 1. The following lemma shows the one property of the
spectral radius function ρ.

Lemma 3.3. [12] (Lemma 2.1) If P ∈ Cn×n and S ∈ Cn×n are such that P = P 2 and
PS = SP then

ρ(PS) ≤ ρ(S).

Now we are ready to prove the following convergence criterion which is similar as in [12].

Lemma 3.4. Let eigenvalues of matrix A∗A satisfy (1.1). Condition ρ((βA∗ − X)A)< 1
is satisfied (i.e. the method (3.4) with the initial value (3.2) is convergent) under the
assumption

max
1≤i≤r

|1− βλi(A
∗A)| < 1. (3.10)

Proof. Let P = XA and S = βA∗A− I. Since P 2 = P and

PS = βXAA∗A−XA = β(XA)∗A∗A−XA = β(AXA)∗A−XA

= βA∗A−XA = βA∗AXA−XA = SP,

from Lemma 3.3 we can conclude that

ρ((βA∗ −X)A) ≤ ρ(βA∗A− I) = max
1≤i≤r

|1− βλi(A
∗A)| < 1.

Last holds since µi = βλi(A
∗A) − 1 for i = 1, . . . , n are the eigenvalues of the matrix

βA∗A− I.
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Denote by sk = ∥Ek∥ and dk = ∥Ek+1 − Ek∥. In the next theorem we prove the
convergence properties of the stated iterative method, i.e. behavior of the sequences tk, sk
and dk.

Theorem 3.2. Iterative method (3.4) with the starting value defined in (3.2) satisfies

lim
k→+∞

tk+1

tk
= lim

k→+∞

sk+1

sk
= lim

k→+∞

dk+1

dk
= 1− β. (3.11)

Proof. From the recurrent relation (3.7):

Ek+1A = −β(EkA)
2 + (1− β)EkA,

we can conclude that

tk+1 = ∥Ek+1A∥ ≥ ∥(1− β)EkA∥ − ∥β(EkA)
2∥

≥ (1− β)∥EkA∥ − β∥EkA∥2 = tk(1− β − βtk).

On the other hand, it holds that

tk+1 = ∥Ek+1A∥ ≤ ∥(1− β)EkA∥+ ∥β(EkA)
2∥

≤ (1− β)∥EkA∥+ β∥EkA∥2 = tk(1− β + βtk).

Previous two inequalities directly implies

1− β − βtk ≤ tk+1

tk
≤ 1− β + βtk.

Since tk = ∥EkA∥ → 0 (Theorem 3.1), by taking a limit of the previous equation we
conclude that tk+1/tk → 1− β when k → +∞.

According to Theorem 3.1 we can write

Ek+1 = (1− β)Ek − βEkAEk.

Previous equation implies

1− β − β
∥EkAEk∥
∥Ek∥

≤ ∥Ek+1∥
∥Ek∥

≤ 1− β + β
∥EkAEk∥
∥Ek∥

. (3.12)

Now from ∥EkAEk∥ ≤ ∥Ek∥2∥A∥ and ∥Ek∥ → 0 when k → +∞ (Theorem 3.1) we conclude
that

0 ≤ lim
k→+∞

∥EkAEk∥
∥Ek∥

≤ lim
k→+∞

∥Ek∥∥A∥ = 0.

Applying a limit on the both sides of equation (3.12) and using the previous equation yields
to sk+1/sk → 1− β when k → +∞.
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In order to verify the statement for the sequence dk, we start fromXk+1−Xk=Ek+1−Ek,
which together with (3.6) implies

dk = ∥Ek+1 − Ek∥ = ∥(1− β)Ek − βEkAEk − Ek∥ = β∥Ek + EkAEk∥.

In the similar way, as in a verifications of the previous statements of the theorem, it is
possible to derive

lim
k→+∞

dk
sk

= lim
k→+∞

dk
∥Ek∥

= β.

Now, we obtain

lim
k→+∞

dk+1/sk+1

dk/sk
= 1,

which implies

lim
k→+∞

dk+1

dk
= lim

k→+∞

(
dk+1/sk+1

dk/sk
· sk+1

sk

)
= 1− β.

This completes the proof of the theorem.

The following lemma shows one additional property of the sequence Xk. It will be useful
for the consideration on the numerical stability of the method (3.4).

Lemma 3.5. Sequence Xk defined by (3.4) and (3.2) satisfies R(Xk) = R(A∗) and N (Xk) =
N (A∗) for each k ≥ 0.

Proof. Since X0 = βA∗, statement of the theorem obviously holds for k = 0. Let y ∈ N (Xk)
be arbitrary vector. From (3.4) we have

Xk+1y = (1 + β)Xky − βXkAXky = 0.

Hence y ∈ N (Xk+1), which implies N (Xk) ⊆ N (Xk+1). Statement R(Xk) ⊇ R(Xk+1) can
be proved analogously. Hence, by mathematical induction we obtain N (Xk) ⊇ N (X0) =
N (A∗) andR(Xk) ⊆ R(X0) = R(A∗). To prove equality in these statements, let us consider
N =

∪
k∈N0

N (Xk). Let y ∈ N be arbitrary vector and let y ∈ N (Xk0) for some k0 ∈ N0.
Since y ∈ N (Xk) for all k ≥ k0 we have Xky = 0 and using Theorem 3.1 we have

Xy = lim
k→+∞

Xky = 0.

Last implies y ∈ N (X) = N (A∗) and N ⊆ N (A∗). Furthermore holds

N (A∗) ⊆ N (Xk) ⊆ N ⊆ N (A∗),

and hence we conclude that N (Xk) = N (A∗).
Now relation

dimR(Xk) = m− dimN (Xk) = m− dimN (A∗) = dimR(A∗)

and R(Xk) ⊆ R(A∗) directly implies R(Xk) = R(A∗).
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In the rest of this section we compare our method with known iterations available in
the literature.

Remark 3.1. Note that for β = 1 method (3.4) reduces to the well-known Shultz method
for computing the inverse and the Moore-Penrose inverse of a given matrix.

Remark 3.2. Let A ∈ Cm×n
r and R ∈ Cn×m

s , 0 ≤ s ≤ r be given. The general iterative

scheme used in the paper [12] for iterative computation of A
(2)
T,S inverse is given by (1.7),

where P = I − βRA, Q = βR and β is a relaxation parameter. In that way, we obtain the
iterative scheme

Xk+1 = (I − βRA)Xk + βR, (3.13)

which comprises all iterative rules underlying the SMS technique. An essential difference
between iterative schemes (3.4) and (3.13), embedded into SMS algorithm, is that matrices
P and Q (as well as the matrix R) are not constant during iterations in (3.4). A formal
comparison points out that the matrix R from (3.13) is replaced by Xk. On the other
hand, value R in the recurrence rule (3.13) is selected in advance and fixed throughout all
iterations. For this purpose the acceleration procedure from the complete SMS algorithm
is not applicable to our algorithm.

Remark 3.3. In order to compare our method (3.4) with the basic iterative method (1.7)
of the SMS algorithm, let us mention that the first-order and the second-order terms in the
error estimation of the iterative process (1.7), (1.8) are equal to

error′1 = (I − βA∗A)Ek, error′2 = 0.

Let the eigenvalues λj(A
∗A) of A∗A be ordered as in (1.1). In view of Lemma 3.2 immedi-

ately follows

0 ≤ ∥error′1∥ ≤
(

max
1≤i≤m

|1− βλi(A
∗A)|+ ε

)
∥Ek∥.

If (3.10) is satisfied, we can choose ϵ such that max1≤i≤m |1 − βλi(A
∗A)| + ε < 1, which

immediately gives
0 ≤ ∥error′1∥ < ∥Ek∥.

On the other hand, the norm of the first-order error estimate matrix in (3.6) satisfies the
same lower and upper bounds:

0 ≤ ∥error1∥ < ∥Ek∥.

Therefore, the SMS original iterative scheme and our method are incomparable generally,
and have identical lower and upper bounds for the norm of the first-order estimate matrix.

Remark 3.4. If we rewrite iterations (3.4) in the form

Xk+1 = Xk(I − βAXk) + βXk,

we observed that our method is formally related with the iterative scheme (2.2) by the
replacement of the matrix A∗ in (2.2) by Xk.
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4 Influence of roundoff errors

Roundoff errors always occur when the floating point arithmetics is used. In this section
we consider the influence of the roundoff errors on our iterative method (3.4). Consequence
is that the computed value X̃s, in sth iteration, differs from the original value Xs by
error matrix ∆s. Our goal is to consider the propagation of the error ∆s through further
iterations. In other words, we consider the same iterative process

X̃k+1 = (1 + β)X̃k − βX̃kAX̃k, k ≥ s, (4.1)

where X̃s = Xs+∆s. If the matrix A is not of full rank, iterative process (4.1) can diverges.
Theorem 4.1 shows that it happens when rank(X̃s) > rank(Xs) = rank(A).

We assume that the matrix norm ∥ · ∥ is induced by the corresponding vector norm.
Since all matrix norms are equivalent, theorem also holds in general case, for arbitrary
matrix norm.

Theorem 4.1. Consider the iterative method (3.4) and assume that the roundoff error
in sth iteration initiates rank(X̃s) > rank(Xs) = rank(A). Then, resulting method (4.1)
diverges and ∥X̃k∥ ≥ c · (1+ β)k−s, where c > 0 is the constant which depends only on X̃s.

Proof. Since N (X̃s) ⊆ N (X̃sAX̃s) and rank(X̃sAX̃s) ≤ rank(A) < rankX̃s, we conclude
that the inclusion is strict and there exists non-zero vector y ∈ N (X̃sAX̃s) \ N (X̃s). Then
X̃sAX̃sy = 0 and X̃sy ̸= 0.

We prove by mathematical induction that X̃ky = (1 + β)k−sX̃sy and X̃kAX̃ky = 0 for
every k ≥ s. Initial condition k = s is already proven. We assume that the statement holds
for some k ≥ 0. From (3.4) and induction hypothesis we have

X̃k+1y = (1 + β)X̃ky − βX̃kAX̃ky = (1 + β)X̃ky = (1 + β)k−s+1X̃sy.

Moreover, from the previous equation and inductive hypothesis we have

X̃k+1AX̃k+1y = (1 + β)X̃k+1AX̃ky

= (1 + β)((1 + β)X̃k − βX̃kAX̃k)AX̃ky

= (1 + β)2X̃kAX̃ky − (1 + β)βX̃kAX̃kAX̃ky = 0.

This finishes the mathematical induction.

Now we directly have

∥X̃k∥ ≥ ∥X̃k y∥
∥y∥

= (1 + β)k−s ∥X̃s y∥
∥y∥

= c · (1 + β)k−s,

where c = ∥X̃sy∥/∥y∥ > 0 since y /∈ N (X̃s). Also ∥X̃k −X∥ ≥ ∥X̃k∥ − ∥X∥ → +∞ when
k → +∞. This completes the proof.

Theorem 4.1 will be used in the following section for explanation of the numerical
instability of our iterative method.



12 M.D. Petković, P.S. Stanimirović

5 Numerical experience

We implemented iterative method (3.4) in package MATHEMATICA 7.0 [16] and tested it on
several test matrices.

Example 5.1. Let us consider the following matrix

A =


0.8846 0.807516 0.381614 0.671798
0.854492 0.91836 0.611953 0.664359
0.673669 0.459477 0.383368 0.575746
0.865487 0.803065 0.523343 0.687009
1.14976 0.964402 0.594889 0.918999

 .

Note that rank(A) = 3. Choice β = 0.075 satisfies the convergence criterion (3.10), since
the eigenvalues of A∗A are

(λ1, λ2, λ3, λ4) = (11.0908, 0.04375, 0.020103, 0)

and max1≤i≤3 |1− βλi| = 0.998492 < 1. The Moore-Penrose inverse X = A† is equal to

X =


1.2218 −1.73664 0.477176 −0.373851 0.849832
2.32302 1.54411 −3.62337 0.0625838 −0.745567
−4.7017 2.95821 2.4219 1.11348 −0.928495

−0.573185 −1.36973 1.99102 −0.113338 0.782951

 .

We investigated the matrix norms

tk = ∥EkA∥ = ∥(Xk −X)A∥, sk = ∥Xk −X∥ = ∥Ek∥, dk = ∥Xk+1 −Xk∥

throughout the iterations. Total number of iterations was Niter = 600. Values of tk, sk and
dk are plotted on Fig.1 (left).



Iterative method for computing Moore-Penrose inverse... 13

0 100 200 300 400 500 600
1E-15

1E-13

1E-11

1E-9

1E-7

1E-5

1E-3

0.1

10

1000

100000
 t

k

 s
k

 d
k

Number of iterations (double precision)

0 100 200 300 400 500 600
1E-18

1E-16

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

0.01

1

100

10000

Number of iterations (50 decimals precision)

 t
k

 s
k

 d
k

Figure 1: Residual norms tk = ∥EkA∥ = ∥(Xk −X)A∥, sk = ∥Xk −X∥ and dk = ∥Xk+1 −Xk∥ through
iterations in lin-log scale.

It can be observed that convergence starts after a few initial steps. When the convergence
starts, all plotted norms first exponentially decrease. Also the ratios tk+1/tk, sk+1/sk and
dk+1/dk are close to 1−β in that case. This numerical experience is in accordance with the
convergence properties derived in Theorem 3.2.

However, continuing with the iterations persistently, we observed that these ratios ex-
ponentially increase with the quotients equal to 1 + β. The reason for such behavior are
roundoff errors, which is in accordance with Theorem 4.1. To show that, we enlarged work-
ing precision to 50 decimals and run the same test. Results are shown on Fig.1 (right).
Since the residual norms are now equal to t600 = 5.77129 · 10−18, s600 = 4.070436 · 10−17

and d600 = 3.052827 · 10−18 after Niter = 600 iterations, we conclude that the convergence
is still stable.

Moreover, numerical results on the other test matrices suggest that the following con-
jecture is valid.

Conjecture 5.1. Assume that the roundoff error in sth iteration initiates increasing of
rank of Xs. Then holds

lim
k→+∞

tk+1

tk
= lim

k→+∞

sk+1

sk
= lim

k→+∞

dk+1

dk
= 1 + β.

We choose the matrix Xk minimizing dk as the output matrix, since sk and dk has
minimum in the same point k = 324. On the other hand, tk has minimum in the point
k = 579. At this point, the absolute difference norm has value sk = 6.82, meaning that Xk

is far from X.

Finally, note that we should specify the total number of iterations Niter. It should be
larger than the index of Xk minimizing dk. Another approach is to perform iterations until
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the ratio dk+1/dk is close enough to 1+β. However, we still need to limit maximal number
of iterations due to the fact that it cannot be estimated analytically as in [12]. Note that
for small k, values dk are increasing (Fig.1) but the slope is smaller than 1 + β.

Hence, there are two possible choices for the stopping criterion:

C1. Fix the total number of iterations Niter and choose the Xk such that the difference
norm dk = ∥Xk+1 −Xk∥ is minimal.

C2. Perform the iterations until |dk+1/dk−β−1| > ϵ (or the maximum number of iterations
is not achieved) and return the same Xk as in the previous case.

Implementations based on the stopping criteria C1 and C2 are denoted by It24C1 and
It24C2, respectively. Complete MATHEMATICA code is included in the appendix.

It is worthy of note that the underlying iterative method in [12] suffers from the same
problem. In [12] the problem is solved by calculating the prescribed number of iterative
steps Niter as the function of given precision ∥X − Xk∥/∥X∥ ≤ δ (see the recommended
number of iterative steps in the relation (2.28) from [12]). Similar calculation are not
available for the iterative process used in the present paper since the fixed matrix R from
[12] takes variable values, as it is mentioned in Remark 3.2.

6 Conclusion

In the literature it is frequently used idea to exploit some Penrose equations to derive
iterative methods for approximating the Moore-Penrose or other generalized inverses. We
survey these methods and derive an algorithm for improving estimates of the Moore-Penrose
generalized inverse, using Penrose equations (2) and (4). Convergence properties of the
introduced method are considered as well as the formula for their first-order and the second-
order error estimates. Numerical examples are presented. A comparative study with respect
to the basic iterative processes underlying in the SMS method and with the Shultz method
is presented.

Acknowledgement: The authors wish to thank to anonymous referee for valuable com-
ments improving the quality of the paper.

A Implementation details

We give the complete MATHEMATICA code of the functions It24C1 and It24C2.

Function It24C1 takes the matrix A (A) and values β (beta) and Niter (Niter) as input
arguments. It returns the matrix Xk such that value dk (normd) is minimal.
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It24C1[A_, beta_, Niter_] :=

Module[{minnormd, Xk, Xk1, Xkmin, normd, i, ind},

Xk = beta*Transpose[A];

minnormd = +Infinity;

Do[

Xk1 = (1 + beta) Xk - beta*Xk.A.Xk;

normd = Norm[Xk1 - Xk];

If [normd < minnormd,

minnormd = normd; Xkmin = Xk;

];

Xk = Xk1;

, {i, 1, Niter}

];

Return[Xkmin];

];

Function It24C2 has the matrix A (A) and values β (beta) and ϵ (eps) as input argu-
ments. It performs iterations until |dk+1/dk−1−β| < ϵ or maximal number of iterations is
reached. Maximal number of iterations is given by the option value MaxIterations which
default is set to 2000.

Options[It24C2] = {MaxIterations -> 2000};

It24C2[A_, beta_, eps_, OptionsPattern[]] :=

Module[{normd1, minnormd, Xk, Xk1, Xkmin, normd, i, ind,

Niter = OptionValue[MaxIterations]},

Xk = beta*Transpose[A];

minnormd = +Infinity;

Do[

Xk1 = (1 + beta) Xk - beta*Xk.A.Xk;

normd = Norm[Xk1 - Xk];

If [normd < minnormd,

minnormd = normd; Xkmin = Xk;

];

If[Abs[normd/normd1 - 1 - beta] < eps,

Break[];

];

normd1 = normd;

Xk = Xk1;

, {i, 1, Niter}

];

Return[Xkmin];

];
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