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Neboǰsa V. Stojković1∗, Predrag S. Stanimirović2
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18000 Nǐs, Serbia.

E-mail: nebojsas@orion.eknfak.ni.ac.yu, pecko@pmf.pmf.ni.ac.yu,
dexterofnis@gmail.com

Abstract

We investigate the problem of finding the initial basic feasible solution
in the simplex algorithm. Two modifications of the two-phase simplex
method are presented. Implementations of the two-phase simplex method
and its modifications in the programming package MATHEMATICA and the
programming language Visual Basic are written. We report computational
results on numerical examples from the Netlib test set.
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1 Introduction

Consider the linear programming (LP) problem in the standard matrix form:

Maximize cT x− d,

subject to Ax = b,(1.1)
x ≥ 0,

where A ∈ Rm×(m+n) is the full row rank matrix ( rank(A) = m), c ∈ Rn+m and
the system Ax = b is defined by x ∈ Rm+n, b ∈ Rm. It is assumed that (i, j)-th
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entry in A is denoted by aij , b = (b1, . . . , bm)T , d ∈ R, xT = (x1, . . . , xn+m)
and cT = (c1, . . . , cn+m). For the LP problem given in the general form

Maximize f(x) = f(x1, . . . , xn1) =
n1∑

j=1

cjxj − d

subject to Ni :
n1∑

j=1

aijxj ≤ bi, i = 1, . . . , s

Ji :
n1∑

j=1

aijxj = bi, i = s + 1, . . . , m

xj ≥ 0, j = 1, . . . , n1,

we transform every inequality Ni into the corresponding equality by adding a
nonnegative slack variable xn1+i:

Ni :
n1∑

j=1

aijxj + xn1+i = bi, i = 1, . . . , s.

In this way we get an equivalent LP problem into the standard form (1.1), where
n = n1 + s−m, cj = 0 for j = n1 + 1, . . . , n1 + s and

A =




a11 · · · a1,n1 1 · · · 0
...

...
...

...
as1 · · · as,n1 0 · · · 1
as+1,1 · · · as+1,n1 0 · · · 0
...

...
...

...
am,1 · · · am,n1 0 · · · 0




.

The two-phase simplex method proceeds in two phases, phase I and phase II.
Phase I attempts to find an initial basic feasible solution. Once an initial basic
feasible solution has been found, phase II is then applied to find an optimal
solution. The simplex method iterates through the set of basic solutions (feasible
in phase II) of the LP problem (1.1). Each basic solution is characterized by the
set of m basic variables xB,1, . . . , xB,m. Other n variables are called nonbasic
variables and denoted by xN,1, . . . , xN,n.

If b ≥ 0 and all nonbasic variables xN,1, . . . , xN,n are equal to zero, then
xB,1 = b1, . . . , xB,m = bm is a basic feasible solution. If the condition b ≥ 0
is not satisfied, it is necessary to find an initial basic feasible solution or to
determine that none exists. There exists a number of strategies for phase I.
The classical approach is to associate with the LP problem (1.1) the following
expanded problem:

Minimize ew,

subject to Ax + w = b,(1.2)
x ≥ 0, w ≥ 0,
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where e = (1, . . . , 1) ∈ Rm and w ∈ Rm is a vector of artificial variables. It
is known that if (x∗,w∗) is an optimal solution of (1.2), then a necessary and
sufficient condition that (1.1) have a feasible solution is w∗i = 0, i = 1, . . . , m
[1], [4]. Then no artificial variable is in the final basis, the artificial variables
and corresponding columns are eliminated, and a feasible basis for the original
LP problem is available. The drawback of this approach is the usage of artificial
variables which makes the problem (1.2) larger than (1.1), since the phase I LP
is obtained by adding m new artificial variables w = (w1, . . . , wm), one for each
of the constraints.

The another variant of the two-phase simplex method is described in [5] and
[6] and restated in the second section. In this paper we use this algorithm,
because it does not require artificial variables.

This paper is organized as follows. In the second section we consider the
transformation of the standard form into the equivalent canonical form and re-
state known algorithms from [5] and [6]. In the third section we present two
new algorithms for obtaining the initial basic feasible solution in the phase I of
the two-phase simplex algorithm from [5] and [6]. We provide a new rule for the
choice of basic and nonbasic variables, i.e. for choosing the variable entering the
base and one leaving the base. Ideally, we want to minimize the total computa-
tional effort. However, this is prohibitive. Therefore we aim at optimizing the
current simplex step. In this way, we improve the computational efficiency of
the simplex algorithm, which is confirmed by the numerical examples reported
in the last section.

2 The simplex method

Without loss of generality we assume that the matrix A from (1.1) is of
full rank, i.e. that equalities Ji are linearly independent. Otherwise, we apply
Gauss-Jordan algorithm for the elimination of redundant equalities. Then we
choose m basic variables xB,1, . . . , xB,m, express them as a linear combination of
nonbasic variables xN,1, . . . , xN,n and obtain the canonical form of the problem
(1.1). We write this canonical form in the following table

xN,1 xN,2 . . . xN,n −1
a11 a12 . . . a1n b1 = −xB,1

. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn bm = −xB,m

c1 c2 . . . cn d = f

(2.1)

Coefficients of the transformed matrix A and the transformed vector c are
again denoted by aij and cj , respectively, without loss of generality.

For the sake of completeness we restate one version of the two-phase maxi-
mization simplex algorithm from [5] and [6] for the problem (1.1), represented
in the tableau form (2.1).
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Within each iteration of the simplex method, exactly one variable goes from
nonbasic to basic and exactly one variable goes from basic to nonbasic. The
variable that goes from nonbasic to basic is called the entering variable; similarly,
the variable that goes from basic to nonbasic is called the leaving variable.
Usually there is more than one choice for the entering and the leaving variables.
The next algorithm describes the move from the current base to the new base
when the leaving-basic and entering-nonbasic variables have been selected.

Algorithm 1. (Interchange a basic variable xB,p and nonbasic variable xN,j .)

a1
ql =





1
apj

, q = p, l = j
apl

apj
, q = p, l 6= j

− aqj

apj
, q 6= p, l = j

aql − aplaqj

apj
, q 6= p, l 6= j

, b1
l =

{
bp

apj
, l = p

bl − bp

apj
alj , l 6= p

,

c1
l =

{
cl − cjapl

apj
, l 6= j,

− cj

apj
, l = j

, d1 = d− bpcj

apj
.

The next algorithm finds an optimal solution of the LP problem when the
condition b1, . . . , bm ≥ 0 is satisfied. This algorithm is called phase II simplex
method.

Algorithm 2.

Step S1A. If c1, . . . , cn ≤ 0, then the basic solution is an optimal solution.

Step S1B. Choose cj > 0 according to the Bland’s rule [2].

Step S1C. If a1j , . . . , amj ≤ 0, stop the algorithm. Maximum is +∞.
Otherwise, go to the next step.

Step S1D. Compute

(2.2) min
1≤i≤m

{
bi

aij
| aij > 0

}
=

bp

apj
.

If the minimum in (2.2) is not unique, make the choice according to the double
least-index rule (Bland’s rule) [2] to eliminate the cycling. Interchange the basic
variable xB,p and nonbasic variable xN,j by applying Algorithm 1.

If the condition b1, . . . , bm ≥ 0 is not satisfied, we use the algorithm from [6]
and [5] to search for the initial basic feasible solution. In contrast of approach
used in [4], it does not use artificial variables, and therefore does not increase
the size of the problem. This algorithm is called phase I simplex method, and
it is restated here as the following Algorithm 3.

Algorithm 3.

Step S2. Select the last bi < 0.

Step S3. If ai1, . . . , ain ≥ 0 then STOP. LP problem is infeasible.
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Step S4. Otherwise, find aij < 0, compute

(2.3) min
k>i

({
bi

aij

}
∪

{
bk

akj
| akj > 0

})
=

bp

apj
,

choose xN,j as the entering-nonbasic variable, xB,p as the leaving-basic variable,
apply Algorithm 1 and go to Step S2 . We also use the Bland’s anti-cyclic rule
if the minimum in (2.3) is not unique.

3 Modifications

The problem of selecting a leaving-basic variable and corresponding entering-
nonbasic variable in the two-phase simplex method is contained in Step S1D of
Algorithm 2 and Step S4 of Algorithm 3. We observed two drawbacks of Step
S4. By i we denote the index of the last negative bi.

1. If p = i for each index t < i = p such that

bt

atj
<

bp

apj
, bt > 0, atj > 0

in the next iteration xB,t becomes negative:

x1
B,t = b1

t = bt − bp

apj
atj < bt − bt

atj
atj = 0.

2. If p>i, in the next iteration b1
i is negative:

bp

apj
<

bi

aij
⇒ b1

i = bi − bp

apj
aij < 0.

Although there may exists bt <0, t < i such that

min
k>t

({
bt

atj
, atj < 0

}
∪

{
bk

akj
| akj > 0, bk > 0

})
=

bt

atj
.

In such case, it is possible to choose atj for the pivot element and obtain

xB,t = b1
t =

bt

atj
≥ 0.

Also, since bt

atj
≤ bk

akj
, each bk > 0 remains convenient for the next basic feasible

solution:
xB,k = b1

k = bk − bt

atj
akj ≥ 0.

Therefore, it is possible that the choice of entering and leaving variable
defined by Step S4 reduces the number of positive b’s after the application of
Algorithm 1. Our goal is to obviate the observed disadvantages in Step S4.
For this purpose, we propose a modification of Step S4 , which gives a better
heuristic for the choice of basic and nonbasic variables. That should reduce the
number of iterations in the phase I of the two-phase simplex method.
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Lemma 3.1 Let the problem (2.1) be feasible and let x be the basic infeasible
solution with bi1 , . . . , biq

< 0, q ≤ m. Consider the index set I = {i1, . . . , iq}.
The following statements are valid.

1. It is possible to produce a new basic solution x1 = {x1
B,1, . . . , x

1
B,m} with at

most q − 1 negative coordinates in only one step of the simplex method in the
following two cases:

a) q = m, and
b) q < m and there exist r ∈ I and s ∈ {1, . . . , n} such that

(3.1) min
h/∈I

{
bh

ahs
| ahs > 0

}
≥ br

ars
, ars < 0.

2. It is possible to produce a new basic solution x1 = {x1
B,1, . . . , x

1
B,m} with

exactly q negative coordinates in one step of the simplex method if neither con-
ditions a) nor b) are valid.

Proof. 1. a) If q = m, for an arbitrary pivot element ajs < 0 we get a
new basic solution with at least one positive coordinate:

x1
B,j = b1

j =
bj

ajs
> 0.

The existence of negative ajs is ensured by the assumption that the problem
(2.1) is feasible.

b) Now assume that the conditions q < m, r ∈ I and (3.1) are satisfied.
Choose ars for the pivot element and apply Algorithm 1. Choose arbitrary
bk ≥ 0, k 6= r.
In the case aks < 0 it is obvious that

x1
B,k = bk − br

ars
aks ≥ bk ≥ 0.

In the case aks > 0, using bk

aks
≥ br

ars
, we conclude immediately

x1
B,k = b1

k = bk − br

ars
aks ≥ bk − bk

aks
aks = 0.

On the other hand, for br < 0 we obtain from Algorithm 1

b1
r =

br

ars
≥ 0.

Therefore, all nonnegative bk remain nonnegative and br <0 becomes nonnega-
tive.
2. If neither conditions a) nor b) are valid, let r /∈ I and s∈{1, . . . , n} be such
that

(3.2) min
h/∈I

{
bh

ahs
| ahs > 0

}
=

br

ars
.
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By choosing ars as the pivot element and by applying the transformations de-
fined in Algorithm 1 we obtain the same number of negative elements in the
vector b. This fact can be proved similarly as the part 1 b). ¤

Remark 3.1 From Lemma 3.1 we get three proper selections of the pivot ele-
ment in Step S4:

- arbitrary ajs < 0 in the case q = m;

- arbitrary ars < 0 satisfying (3.1) when the conditions 0 < q < m, r ∈ I
are satisfied;

- arbitrary ars > 0 satisfying (3.2) when 0 < q < m and there is no ars < 0
satisfying conditions in the previous case.

In accordance with Lemma 3.1 and considerations in Remark 3.1, we propose
the following improvement of Algorithm 3.

Algorithm M1. (Modification of Algorithm 3 ).

Step 1. If b1, . . . , bm ≥ 0 perform Algorithm 2 . Otherwise continue.

Step 2. Select the first bis < 0.
Step 3. If ais,1, . . . , ais,n ≥ 0 then STOP. LP problem is infeasible.

Otherwise, construct the set

Q = {ais,jp < 0, p = 1, . . . , t},

initialize variable p by p = 1 and continue.
Step 4. Compute

(3.3) min
1≤h≤m

{
bh

ah,jp

| ah,jp > 0, bh > 0
}

=min
h/∈I

{
bh

ah,jp

| ah,jp > 0
}

=
br

ar,jp

.

Step 5. If bis

ais,jp
≤ bh

ah,jp
then interchange entering-nonbasic variable xN,jp and

leaving-basic variable xB,is (apply Algorithm 1) and go to Step 1. Otherwise go
to Step 6.

Step 6. If p > t interchange xN,jp and xB,r (apply Algorithm 1) and go to Step
1. Otherwise, put p = p + 1 and go to Step 3.

If there is no br < 0 such that the condition (3.1) is valid we choose pivot
element according to Remark 3.1 to obtain a solution with the same number of
negative b’s. To avoid the cycling in this case, we will present an anti-cycling
rule for Algorithm M1, which is based on the following result.

Lemma 3.2 Assume that there is no br < 0 such that the conditions (3.1) of
Lemma 3.1 are satisfied. After choosing the pivot element according to (3.2) we
obtain a new base where holds 0 > b1

i ≥ bi, for all i ∈ I.
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Proof. From Algorithm 1 we have:

b1
i = bi − br

ars
ais.

According to (3.2) we obtain br

ars
≥ 0. Now, taking into account ais < 0, the

conclusion b1
i ≥ bi immediately follows.

On the other hand,

b1
i = ais

(
bi

ais
− br

ars

)
< 0

because the condition (3.1) of Lemma 3.1 is not valid for bi < 0. ¤
Since is in Step 2 of Algorithm M1 is fixed, Algorithm M1 may cycle only if

b1
is

= bis
. For that reason, if the minimum in (3.3) is not unique we choose jp

according to the Bland’s rule which guarantee that the simplex method always
terminates [2], [7] (Theorem 3.3). Therefore, according to Lemma 3.2, after
finite number of iterations value of bis will start to increase or we will conclude
that the problem is infeasible (ais,j are positive for all j = 1, . . . , n).

Algorithm M1 chooses one fixed (the first) value bis < 0 satisfying conditions
of Lemma 3.1. But there may exists some other bi < 0 such that conditions of
Lemma 3.1 are satisfied, and in the next iteration we can obtain a basic solution
with smaller number of negative b’s. According to all previous considerations
we establish Algorithm M2.

Algorithm M2. (Improved version of Algorithm M1 ).
Step 1. If b1, . . . , bm ≥ 0 perform Algorithm 2 . Otherwise, construct the set

B = {ik | bik
< 0, k = 1, . . . , q}.

Step 2. Set s = 1 and perform the following:
Step 2.1. If ais,1, . . . , ais,n ≥ 0 then STOP. LP problem is infeasible.

Otherwise, construct the set

Q = {ais,jp < 0, p = 1, . . . , t},

put p = 1 and continue.
Step 2.2. Find the minima:

p′ = argmin
{

bk

ak,jp

| bk < 0, ak,jp < 0
}

,

M(j) = min
{

bk

ak,jp

| bk > 0, ak,jp > 0
}

.

If bk

ak,jp
≤M(jp) then choose ap′,jp for the pivot element,

apply Algorithm 1 and go to Step 1.
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(In the next iteration bk becomes positive).
Step 2.3. If p < t then put p = p + 1 and go to Step 2.2,

otherwise continue.
Step 2.4. If s < q then put s = s + 1 and go to Step 2.1,

otherwise continue.
Step 3. (Condition (3.1) is not valid)

Step 3.1. Select j0 = argmin
{
xN,l | aiq,l < 0

}
.

Step 3.2. Compute:

p′′ = argmin
{

xB,p | bp

ap,j0

= M(j0)
}

.

Step 3.3. Choose ap′′,j for pivot element,
apply Algorithm 1 and go to Step 1.

4 Numerical experience

We implemented all presented algorithms in the package MATHEMATICA and in
the programming language Visual Basic. Software MarPlex (written in program-
ming language Visual Basic), is available on:
http://tesla.pmf.ni.ac.yu/people/dexter/software/marplex.zip.

Example 4.1 In this example we point out the sensitivity of the algorithm
in [6] to the initial ordering of the main constraints. We tested MATHEMATICA

implementation on the LP problem

Maximize −3x1 − 2x2

subject to −x1 + 3x2 ≤ −1, −2x1 − 10x2 ≤ −10, 2x1 + 4x2 ≤ 8, 3x1 − 5x2 ≤ 6.

and encountered next problems. By using Algorithm 1–Algorithm 3 we obtain
the maximal value −17/2 and the extreme point x1 = 5/2, x2 = 1/2 in 4 itera-
tions.

If we change the order of the constraints, and consider the same objective
function subject to the constraints

2x1 + 4x2 ≤ 8, 3x1 − 5x2 ≤ 6, −x1 + 3x2 ≤ −1, −2x1 − 10x2 ≤ −10,
we obtain the same solution in two iterations.

Moreover, in the next configuration of the constraints
−2x1 − 10x2 ≤ −10, 3x1 − 5x2 ≤ 6, 2x1 + 4x2 ≤ 8, −x1 + 3x2 ≤ −1

we achieve the optimal solution in three iterative steps.
The source of this problem lies in the mentioned drawback of Algorithm 3 as

well as in the specific choice of basic and nonbasic variables in MATHEMATICA.
About the package MATHEMATICA see, for example [8].

On the other hand, using the Algorithm M1 we get the solution in two
iterations for all cases.
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Example 4.2 We tested the code MarP lex on some Netlib test problems. For
each problem we reserve three rows in the Table 1: the first row contains results
corresponding to Algorithm M2, the second one corresponds to Algorithm 3 and
the third row corresponds to Algorithm M1. Dash in a column means that the
implementation of the particular algorithm gives wrong result. The number of
iterations for finding an initial basic feasible solution (phase I) are arranged in
columns denoted by Bf. The number of applications of the phase II and the
total number of iterations are given in columns denoted by Sim. and Bf.+Sim.,
respectively. In the last column we place results obtained by code PCx [3]. Let
us mention that code PCx is based on primal-dual interior point method.

Name Bf. Sim. Bf.+Sim. Objective value PCx

57 44 101 225494.963162364
adlittle 77 38 115 225494.96316238 2.25494963e+005

21 54 76 225494.963162379

4 8 12 −464.753142857143
afiro 17 5 22 −464.753142857143 −4.64753143e+002

2 9 11 −464.753142857143

67 22 89 −35991767.2865765
agg 84 31 115 −35991767.2865765 −3.59917673e+007

38 25 63 −35991767.2865765

40 69 109 −20239252.3559771
agg2 52 64 118 −20239252.3559771 −2.02392521e+007

31 123 154 −20239252.3559771

71 77 148 10312115.9293083
agg3 141 81 222 10312115.7307162 1.03121159e+007

51 143 194 10312115.9372015

273 159 432 −158.628018177046
bandm 3128 171 3299 − −1.58628018e+002

1495 127 1622 −
1 33 34 33591.8961121999

beaconfd 1 33 34 33591.8961121999 3.35924858e+004
1 33 34 33591.8961121999

1 732 733 −30.769485006264
blend 1 732 733 −30.769485006264 −3.08121498e+001

1 732 733 −30.769485006264

1276 72 1348 1518.50982913344
brandy 2248 81 2329 − 1.51851054e+003

624 90 714 1518.50992977114

251 120 371 2690.01291380796
capri 214 138 352 2690.01291380796 2.69001291e+003

1316 163 1479 2691.57274856721

6933 591 7524 2185196.69885648
czprob 11261 635 11886 2185196.69882955 2.18519682e+006

6824 648 7472 2185196.69885615

215 318 533 −18.7519290765415
e226 5663 567 6230 − −1.87519291e+001

395 364 759 −
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Name Bf. Sim. Bf.+Sim. Objective value PCx

191 257 448 −755.715233369051
etamacro 185 176 361 −755.715233352295 −7.55715223e+002

162 215 377 −755.715233346024

141 375 516 172791.065595611
finnis 276 308 584 172791.065595611 1.72791066e+005

809 225 1034 172791.03306592

1 834 835 −9146.3780989634
fit1d 1 834 835 −9146.3780989634 −9.14637809e+003

1 834 835 −9146.3780989634

1 420 421 −109585.736129308
ganges 1 420 421 −109585.736129308 −1.09585736e+005

1 420 421 −109585.736129308

229 305 534 6902235.99954881
gfrd-pnc 240 337 577 6902235.99954882 6.90223600e+006

126 311 437 6902235.99954882

1 879 880 −106870942.285325
grow15 1 879 880 −106870942.285325 −1.06870941e+008

1 879 880 −106870942.285325

1 3569 3570 −160871482.230788
grow22 1 3569 3570 −160871482.230788 −1.60834336e+008

1 3569 3570 −160871482.230788

1 240 241 −47787811.8605706
grow7 1 240 241 −47787811.8605706 −4.77878118e+007

1 240 241 −47787811.8605706

2 157 159 −896644.821863043
israel 2 157 159 −896644.821863043 −8.96644817e+005

2 157 159 −896644.821863043

1 50 51 −1749.9001299062
kb2 1 50 51 −1749.9001299062 −1.74990013e+003

1 50 51 −1749.9001299062

76 128 204 −25.2647060618762
lotfi 339 158 397 −25.2647060618632 −2.52647061e+001

111 137 248 −25.2647060618773

9 30 39 −266.616
recipe 8 29 37 −266.616 −2.66616000e+002

9 28 37 −266.616

1 56 57 −52.2020612117073
sc105 1 56 57 −52.2020612117073 −5.22020612e+001

1 56 57 −52.2020612117073

1 135 136 −52.2020612117073
sc205 1 135 136 −52.2020612117073 −5.22020612e+001

1 135 136 −52.2020612117073

1 26 27 −64.5750770585645
sc50a 1 26 27 −64.5750770585645 −6.45750771e+001

1 26 27 −64.5750770585645

1 29 28 −70
sc50b 1 29 28 −70 −7.00000000e+001

1 29 28 −70
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Name Bf. Sim. Bf.+Sim. Objective value PCx

81 41 122 −2331389.82433099
scagr7 90 35 125 −2331389.82433097 −2.33138982e+006

69 26 95 −2331389.82433098

1133 97 1220 18417.3255500362
scfxm1 2478 200 2878 − 1.84167590e+004

311 123 434 18416.7590283489

90 38 128 1878.12482273811
scorpion 114 37 151 1878.12482273811 1.87812482e+003

70 70 140 1878.12482273811

320 8 328 1412.25
sctap1 496 57 553 1412.24999999998 1.41225000e+003

131 137 268 1412.25

739 195 934 1724.80714285713
sctap2 739 195 934 1724.80714285713 1.72480714e+003

739 195 934 1724.80714285713

469 252 721 1424
sctap3 618 247 865 1424 1.42400000e+003

369 909 1278 1424

79 32 111 15711.6000000006
seba 90 40 130 15711.5999999923 1.57116000e+004

− − − −
89 65 154 −76589.3185791853

share1b 366 69 435 −76589.3224159041 −7.65893186e+004
368 63 431 −76589.3185791526

135 38 173 −415.73224074142
share2b 123 46 169 −415.732240741419 −4.15732241e+002

92 25 117 −415.732240741416

41 276 317 1208825346
shell 55 279 334 1208825346 1.20882535e+009

78 278 356 1208825346

8 251 259 1793324.53797036
ship04l 450 124 574 1793324.53797036 1.79332454e+006

100 374 474 1793324.53797035

14 172 186 1798714.70044539
ship04s 116 185 301 1798714.70044539 1.79871471e+006

57 194 251 1798714.70044539

320 530 850 1909055.21138913
ship08l 461 364 825 1909055.21138913 1.90905521e+006

144 631 775 1909055.21138913

54 258 312 1920098.21053462
ship08s 169 239 408 1920098.21053462 1.92009821e+006

67 272 339 1920098.21053462

49 1019 1068 1470187.91932926
ship12l 938 1908 2846 1470187.91932926 1.47018797e+006

232 1711 1943 1470187.91932926

55 439 494 1489236.13440613
ship12s 429 556 985 1489236.13440613 1.48923613e+006

166 486 632 1489236.13440613
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Name Bf. Sim. Bf.+Sim. Objective value PCx

75 326 401 15394362.1836319
sierra 65 325 490 15381546.3836319 1.53943622e+007

82 310 392 15394362.1836319

2450 44 2494 −251.26695098074
stair 686 33 719 −251.266951192317 −2.51266951e+002

11066 168 11234 −
21 138 159 1257.6995

standata 76 98 174 1257.6995 1.25769951e+003
146 116 262 1257.69949999999

131 109 240 1406.0175
standmps 260 155 415 1406.01749999996 1.40601750e+003

752 72 824 1406.0175

1 17 18 −41131.9762194364
stocfor1 1 17 18 −41131.9762194364 −4.11319762e+004

1 17 18 −41131.9762194364

69 55 124 129831.462637412
vtp.base 179 71 250 129831.462461362 1.29831463e+005

430 47 477 129831.464051472

Table 1.

5 Conclusion

We described two improvements of the algorithm for finding the initial basic
feasible solution of the conventional simplex algorithm from [5], [6]. Both algo-
rithms as well as the conventional two-phase simplex algorithm are implemented,
tested and compared for each other. From Table 1 it is evident that Algorithm
M2 gives the best results, in general. Also Algorithm M1 is better with respect
to Algorithm 3, in the most cases. This agrees with our theoretical considera-
tions. Summarizing the results arranged in Table 1, we see that Algorithm M2
gives a minimal number of iterations in 19 problems, Algorithm M1 in 12, and
Algorithm 3 in 4 test problems. In the rest 15 problems all methods give the
same number of iterations.

Acknowledgement. We are grateful to Professor James Strayer for helpful
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[4] J.P. Ignizio, Linear programming in single-multiple-objective systems, Englewood
Cliffs: Prentice Hall, 1982.

[5] E. Nering and A. Tucker, Linear Programs and Related Problems, Academic Press,
New York, 1993.

[6] J. Strayer, Linear Programming and Its Applications, Springer-Verlag 1989.

[7] R.J. Vanderbei, Linear Programming: Foundations and Extensions, Department
of Operations Research and Financial Engineering, Princeton University, Prince-
ton, NJ 08544, 2001.

[8] S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge Univer-
sity Press, 1999.


