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Abstract

This paper deals with the algorithm for computing outer inverse with prescribed range and null space,
based on the choice of an appropriate matrix G and Gauss–Jordan elimination of the augmented matrix
[G | I]. The advantage of such algorithms is the fact that one can compute various generalized inverses
using the same procedure, for different input matrices. In particular, we derive representations of the
Moore–Penrose inverse, the Drazin inverse as well as {2, 4} and {2, 3}–inverses. Numerical examples on
different test matrices are presented, as well as the comparison with well–known methods for generalized
inverses computation.
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1 Introduction

Using the usual notation, by Cm×n
r we denote the set of all complex m × n matrices of rank r, and by I

we denote the unit matrix of an appropriate order. Furthermore A∗, R(A), rank(A) and N (A) denote the
conjugate transpose, the range, the rank and the null space of A ∈ Cm×n.

If A ∈ Cm×n
r , T is a subspace of Cn of dimension t ≤ r and S is a subspace of Cm of dimension m − t,

then A has a {2}-inverse X such that R(X) = T and N (X) = S if and only if AT ⊕ S = Cm. In the

case when the existence is ensured, X is unique and it is denoted by A
(2)
T,S . Outer generalized inverses with

prescribed range and null-space are very important in matrix theory. They are used in construcing iterative
methods for solving nonlinear equations [1, 8] as well as in statistics [4, 5]. Furthermore, outer inverses
play an important role in stable approximations of ill-posed problems and in linear and nonlinear problems
involving rank-deficient generalized inverses [7, 19]. Observing from the theoretical point of view, it is well

known that the Moore-Penrose inverse and the weighted Moore-Penrose inverse A†, A†M,N , the Drazin and

the group inverse AD, A#, as well as the Bott-Duffin inverse A
(−1)
(L) and the generalized Bott-Duffin inverse

A
(†)
(L) can be presented by a unified approach, as generalized inverses A

(2)
T,S for appropriate choice of matrices

T and S. For example, the next statements are valid for a rectangular matrix A (see [1, 9, 16]):

A† = A
(2)
R(A∗),N (A∗), A†M,N = A

(2)

R(A]),N (A])
, (1.1)

where M,N are positive definite matrices of appropriate orders and A] = N−1A∗M . For a given square
matrix A the next identities are satisfied (see [1, 2, 3, 16]):

AD = A
(2)

R(Ak),N (Ak)
, A# = A

(2)
R(A),N (A), (1.2)
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where k = ind(A). If A is the L-positive semi–definite matrix and L is a subspace of Cn which satisfies
AL⊕ L⊥ = Cn, S = R(PLA), then the next identities are satisfied (see [2, 16, 17]):

A
(−1)
(L) = A

(2)

L,L⊥
, A

(†)
(L) = A

(2)

S,S⊥
. (1.3)

We study Gauss–Jordan elimination methods for computing various outer inverses of complex matrices.
The oldest and best known among these methods is the method for calculating the inverse matrix. The
Gauss–Jordan elimination method for computing the inverse of a nonsingular matrix A is based on the
executing elementary row operations on the pair [A | I] and its transformation into the block matrix

[
I | A−1

]
involving the inverse A−1. A number of numerical methods are developed for computing various classes of
outer inverses with prescribed range and null space. The Gauss–Jordan elimination method to compute
the Moore–Penrose inverse is developed in [12]. The metod from [12] is based on two successive sets of
elementary row operations. The first computes reduced row echelon form of A∗A:

E [A∗A | I] =

[
E1A

∗A E1

O E2

]
(1.4)

while the second provides the following transformation[
E1A

∗A E1

E2 O

]
→
[

I

[
E1A

∗A
E2

]−1 [
E1

O

] ]
.

After that, Moore-Penrose inverse can be computed by

A† =

[
E1A

∗A
E2

]−1 [
E1

O

]
A∗.

More general algorithm for computing A
(2)
T,S inverses is introduced in [13]. This algorithm is very useful

generalization of the method from [12]. The essence of this generalization consists in the replacement of the
matrix A∗ by an appropriate matrix G.

Several improvements of the algorithm from [12] are recently presented in [6]. First improvement from
[6] assumes the initial transformation of the form

E [A∗| I] =

[
E1A

∗ E1

O E2

]
.

The second improvement exploits special structure of the matrix which is subject in Gauss Jordan transfor-
mation.

Two main goals of the present paper should be emphasized.

Firstly, motiveted by the modification introduced in [6], in the present paper we introduce corresponding
modification of the algorithm introduced in [13]. This possibility is mentioned in the conclusion of the paper
[6]. That type algorithms are able to compute various generalized inverses of matrix A, for different choice
of an input matrix G.

Moreover, we observed that the algorithms introduced in [6, 11, 12, 13] are not accompained by adequate
implementation and not tested on adequate test examples. The numerical properties of these algorithms
are not studied in details so far. Our second goal is the implementation of described algorithms and the
numerical experience derived applying the implementation.

The paper is organized as follows. Necessary preliminary results are surveyed in the next section. Our
main algorithm is defined in the third section after necessary theoretical investigations. In Section 4 we
presented an illustrative numerical example and explain our motivation for the corresponding improvements
of the algorithm. These improvements save the computational time and increase numerical stability of the
main algorithm. Exploiting our implementation in the programming language C++, in the last section we
tested considered algorithms on randomly generated test matrices. Also, a series of numerical experiments
corresponding to the Moore-Penrose inverse and the Drazin inverse are presented.
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2 Preliminary results

There exist a number of full–rank representations for outer inverses of prescribed rank as well as for outer
inverses with prescribed range and kernel. The following representations from [11, 18] will be useful for our
results that follow.

Proposition 2.1. Let A∈Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let S be a subspace of Cm

of dimension m − s. In addition, suppose that G ∈ Cn×m satisfies R(G) = T , N (G) = S. Let G has an

arbitrary full–rank decomposition, that is G = UV . If A has a {2}-inverse A
(2)
T,S, then:

(1) [11] GAF is an invertible matrix and

A
(2)
T,S = U(V AU)−1G = A

(2)
R(U),N (V ). (2.1)

(2) [18] ind(AG) = ind(GA) = 1 and

A
(2)
T,S = G(AG)# = (GA)#G. (2.2)

According to known representations from [1, 10, 11, 14, 15] we state the next additional representations
with respect to (1.1)–(1.3). These representations characterize the classes of {2}, {2, 4} and {2, 3} generalized
inverses of known rank.

Proposition 2.2. Let A ∈ Cm×n
r be an arbitrary matrix and let 0 < s ≤ r be a positive integer. The

following general representations for some classes of generalized inverses are valid:

(a) A{2}s = {A(2)
R(U),N (V ) = U(V AU)−1G | U ∈Cn×s, V ∈Cs×m, rank(V AU)=s};

(b) A{2, 4}s =
{
A

(2,4)
R((V A)∗),N (V ) = (V A)∗ (V A(V A)∗)

−1
G | V ∈ Cs×m

s

}
=
{

(V A)†V | V A ∈ Cs×n
s

}
;

(c) A{2, 3}s =
{
A

(2,3)
R(U),N ((AU)∗) = U ((AU)∗AU)

−1
(AU)∗| U ∈ Cn×s

s

}
=
{
U(AU)†| AU ∈ Cm×s

s

}
;

(d) A{1, 2} = A{2}r.

Proposition 2.3. [18] Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimension s ≤ r, and let
S be a subspace of Cm of dimension m − s. In addition, suppose that G ∈ Cn×m satisfies R(G) = T and

N (G) = S. If A has A
(2)
T,S then ind(AG) = ind(GA) = 1 and

A
(2)
T,S = G(AG)# = (GA)#G.

Sheng and Chen in [13] derived the following representation of the A
(2)
T,S inverse corresponding to a

particular choice of the matrix G

A
(2)
T,S =

[
E1GA
E2

]−1 [
E1

O

]
G, (2.3)

where the matrices E1 and E2 are defined in (1.4). The authors of the paper [13] derive an explicit expression
for the group inverse (GA)# and later, using this representation (2.2), established the representation (2.3).

Sheng and Chen in [13] also proposed the following Gauss-Jordan elimination algorithm for calculating
the representation (2.3):

Algorithm 2.1 Computing the A
(2)
T,S inverse of the matrix A using the Gauss–Jordan elimination.

(Algorithm GJATS2)

Require: The matrix A of dimensions m× n and of rank r.
1: Confirm G and calculate GA.
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2: Execute elementary row operations on the pair [GA | I] to transform it into

E [GA | I] =

[
E1GA E1

O E2

]
.

3: Exchange the block of zeros with the corresponding block of the lower right–hand of the above 2 × 2
block matrix, then resuming elementary row operations on the pair[

E1GA E1

E2 O

]
to transform it into

[I | Y ] =

[
I

[
E1GA
E2

]−1 [
E1

O

] ]
.

4: Compute the output

A
(2)
R(G),N (G) =

[
E1GA
E2

]−1 [
E1

O

]
G = Y G.

The particular case G = A∗ the representation (2.3) produces analogous representation of the Moore–
Penrose inverse and Algorithm 2.1 reduces to the corresponding algorithm for computing the Moore–Penrose
inverse. This representation and algorithm are proposed in [12]. Corresponding algorithm we denote by
Algorithm GJMP.

On the other hand, the following improvement of Algorithm GJMP is recently published in [6]:

Algorithm 2.2 Computing the A† using the Gauss–Jordan elimination.
(Algorithm GJMP1)

Require: The matrix A of dimensions m× n and of rank r.
1: Execute elementary row operations on the pair [A∗ | I] to get the reduced row echelon form

E [A∗| I] =

[
E1A

∗ E1

O E2

]
=

[
B E1

O E2

]
,

where the notation B = E1A
∗ is used.

2: Compute BA and form [
BA B
E2 O

]
to transform it into [

I | A†
]

=

[
I |

[
BA
E2

]−1 [
B
O

]]
.

3: Return the output

A† =

[
BA
E2

]−1 [
B
O

]
.

Our goal in the present paper is to improve Algorithm GJATS2 in the same way as Algorithm GJMP1
improves Algorithm GJMP. That gives a coherent set of numerical methods of similar type, which numerical
properties are are also examined.

3 The algorithm

We start by proving the main theorem, which gives the representation of A
(2)
T,S inverse corresponding to

matrix G, using incomplete Gauss-Jordan elimination of the matrix [G | I].
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Theorem 3.1. Let A ∈ Cm×n
r is given matrix. Let G ∈ Cn×m

s is given matrix satisfying 0 < s ≤ r. Assume
that the condition AT ⊕ S = Cm is satisfied in the case T = R(G), S = N (G). Let[

E1G
O

]
=

[
B
O

]
be the reduced row echelon form of G and E is the product of all the elementary matrices derived corresponding
to s pivoting steps of Gauss-Jordan elimination on [G | I] satisfying

E [G | I] =

[
B E1

O E2

]
.

Then the matrix [
BA
E2

]
(3.1)

is nonsingular and

A
(2)
R(G),N (G) =

[
BA
E2

]−1 [
B
O

]
=

[
E1GA
E2

]−1 [
E1G
O

]
. (3.2)

Proof. Denote the first s rows of E by E1. By E2 we denote the remaining n − s columns of E. It follows
that

EG =

[
E1

E2

]
G =

[
E1G
O

]
=

[
B
O

]
, (3.3)

where the notation B = E1G is used for the sake of simplification. We also have

E2G = O,

which implies R(G) ⊂ N (E2). Due to the fact

dim (N (E2)) + dim (R(E2)) = dim (N (E2)) + rank(E2) = n

and rank(E2) = n− s we have

dim (N (E2)) = n− (n− s) = s = rank(G) = dim (R(G)),

and later

N (E2) = R(G). (3.4)

Since the identity R(G) = T holds, we have

N (E2) = R(G) = R(A
(2)
T,S),

which further implies

E2A
(2)
T,S = O. (3.5)

On the other hand, we have

BAA
(2)
T,S = B.

Indeed, if G = UV is a full–rank factorization of G, according to Proposition 2.1 we obtain

A
(2)
T,S = U(V AU)−1V

and
BAA

(2)
T,S = E1(UV )AU(V AU)−1V

= E1UV = E1G

= B.
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The last identity in conjunction with (3.5) implies[
BA
E2

]
A

(2)
T,S =

[
B
O

]
. (3.6)

In order to complete the proof it is necessary to verify invertibility of the matrix[
BA
E2

]
.

Let x ∈ Cn satisfy [
E1GA
E2

]
x = 0.

Then immediately follows E2x = E1GAx = 0. The condition E2x = 0 implies

x ∈ N (E2) = R(G) = R(GA). (3.7)

From E1GAx = 0, taking into account (3.4), we have

x ∈ N (E1GA) = N (GA). (3.8)

According to assertions (3.7) and (3.8) and Proposition 2.3 we have

x ∈ R(GA) ∩N (GA) = {0} ⇒ x = 0, (3.9)

which completes the proof.

According to the representation introduced in Theorem 3.1, we introduce the following algorithm for

computing A
(2)
T,S inverses:

Algorithm 3.1 Computing the A
(2)
T,S using the Gauss–Jordan elimination.

(Algorithm GJATS2PM)

Require: The complex matrix A of dimensions m× n and of rank r.
1: Choose a complex matrix G of dimensions n×m and of rank 0 < s ≤ r.
2: Perform elementary row operations on the pair [G| I] to get the reduced row echelon form

E [G | I] =

[
E1G E1

O E2

]
=

[
B E1

O E2

]
.

3: Compute BA and form the block matrix [
BA B
E2 O

]
.

Transform this matrix into

[I | X] =

[
I

[
BA
E2

]−1 [
B
O

] ]
applying the Gauss–Jordan elimination

4: Return

A
(2)
R(G),N (G) = X =

[
BA
E2

]−1 [
B
O

]
.

It is possible to use Algorithm GJATS2PM to compute the common six important generalized inverses,
for a different choice of input matrices.
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Corollary 3.1. For a given matrix A ∈ Cm×n
r and arbitrarily chosen matrix G ∈ Cn×m

s the following

statements are valid for the generalized inverse A
(2)
R(G),N (G) produced by Algorithm GJATS2PM:

[
E1GA
E2

]−1 [
E1G
O

]
= A

(2)
R(G),N (G) =



A†, G = A∗;

A†M,N , G = A];

AD, G = Al, l ≥ ind(A);
A#, G = A;

A
(−1)
(L) , R(G) = L, N (G) = L⊥;

A
(†)
(L), R(G) = S, N (G) = S⊥.

(3.10)

Furthermore, using representations from [15], we derive Gauss–Jordan elimination methods for generating
{2, 4} i {2, 3}–inverses.

Corollary 3.2. Let A∈Cm×n
r be the given matrix, s ≤ r be a given integer. Assume that the conditions of

Theorem 3.1 are satisfied. Then the following statements are valid:

(a) If G = UV is arbitrary full-rank factorization of G, then expression (3.2) produces[
E1GA
E2

]−1 [
E1G
O

]
= A

(2)
R(U),N (V ) = U(V AU)−1V ∈ A{2}s. (3.11)

(b) In the case G = (V A)∗V ∈Cn×m
s expression (3.2) produces[

E1GA
E2

]−1 [
E1G
O

]
= A

(2,4)
R((V A)∗),N (V )

= (V A)∗(V A(V A)∗)−1V = (V A)†V ∈ A{2, 4}s.
(3.12)

(c) In the case G = U(AU)∗∈Cn×m
s the following holds:[

E1GA
E2

]−1 [
E1G
O

]
= A

(2,3)
R(U),N ((AU)∗)

= U((AU)∗AU)−1(AU)∗ = U(AU)† ∈ A{2, 3}s.
(3.13)

4 Example and improvement of Algorithm GJATS2PM

In this section we illustrate Algorithm GJATS2PM on one numerical example and show one improvement
that has been used in our implementation. The idea for such improvement is briefly mentioned in [6]. Here
we give more details, including the explicit formulation of the modified steps of Algorithm GJATS2PM.

Example 4.1. Consider the following matrices A ∈ C7×6 and G ∈ C6×7:

A =



0. 5. 1. 8. 5. 4.
3. 8. 8. 7. 1. 8.
7. 5. 3. 0. 0. 3.
1. 1. 9. 4. 1. 0.
0. 3. 5. 5. 6. 6.
1. 6. 4. 3. 0. 6.
7. 8. 5. 3. 8. 7.


, G =


54. 81. 18. 18. 153. 18. 45.
30. 21. 10. 10. 49. 2. 17.
24. 24. 8. 8. 50. 4. 16.
48. 36. 16. 16. 82. 4. 28.
42. 69. 14. 14. 128. 16. 37.
54. 81. 18. 18. 153. 18. 45.

 .

It is not difficult to determine ranks of these matrices: rank(A) = 6, rank(G) = 2. We apply Algorithm

GJATS2PM to compute A
(2)
T,S inverse corresponding to the matrix G. After performing Gauss-Jordan
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elimination up to the n = 7th column on the matrix [G | I] ∈ C6×13, we obtain[
B E1

O E2

]

=



1. 0. 0.3333 0.3333 0.5833 −0.1667 0.3333 0.2129 0. 0. 0. −0.2500 0.
0. 1. 0. 0. 1.5000 0.3333 0.3333 −0.1296 0. 0. 0. 0.1667 0.

0. 0. 0. 0. 0. 0. 0. −2. 0. 1. 0. 2. 0.
0. 0. 0. 0. 0. 0. 0. −5.5556 0. 0. 1. 6. 0.
0. 0. 0. 0. 0. 0. 0. −3.6667 1. 0. 0. 4. 0.
0. 0. 0. 0. 0. 0. 0. −1. 0. 0. 0. 0. 1.


(4.14)

Rows of the matrix [G | I] are permuted according to the following permutation of rows:

row = (1, 5, 3, 4, 2, 6).

Next step is to form the matrix:[
E2 O
BA B

]

=


−2. 0. 1. 0. 2. 0. 0. 0. 0. 0. 0. 0. 0.
−5.5556 0. 0. 1. 6. 0. 0. 0. 0. 0. 0. 0. 0.
−3.6667 1. 0. 0. 4. 0. 0. 0. 0. 0. 0. 0. 0.
−1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.

4.8333 10.4167 8.9167 12.7500 11.5000 9.8333 1. 0. 0.3333 0.3333 0.5833 −0.1667 0.3333
5.6667 17.1667 18.5000 16.5000 12.6667 21.3333 0. 1. 0. 0. 1.5000 0.3333 0.3333


(4.15)

and continue Gauss-Jordan elimination. Note that both matrices (4.14) and (4.15) are rounded on 4 decimals.
In fact, double precision is used for representation of all intermediate results. Hence, we finally get

[I | X]

=


1. 0. 0. 0. 0. 0. −4.38857 2.84571 −1.46286 −1.46286 1.70857 1.68000 −0.51429
0. 1. 0. 0. 0. 0. 3.89587 −2.50540 1.29862 1.29862 −1.48550 −1.48444 0.46349
0. 0. 1. 0. 0. 0. 1.21651 −0.77841 0.40550 0.40550 −0.45799 −0.46222 0.14603
0. 0. 0. 1. 0. 0. 5.60000 −3.60000 1.86667 1.86667 −2.13333 −2.13333 0.66667
0. 0. 0. 0. 1. 0. −4.99683 3.23492 −1.66561 −1.66561 1.93757 1.91111 −0.58730
0. 0. 0. 0. 0. 1. −4.38857 2.84571 −1.46286 −1.46286 1.70857 1.68000 −0.51429

 .
(4.16)

Now the matrix X represents the inverse A
(2)
T,S corresponding to matrix G.

Previous example leads to one possible improvement of Algorithm GJATS2PM. The matrix E2 consists
of several columns which remain unchanged during the first Gauss-Jordan elimination. Those columns are
3, 4, 2 and 6, or row(3), row(4), row(5) and row(6). In the general case, columns with indices row(s +
1), row(s + 2), . . . , row(n) (s = rank(G)) remain unchanged and correspond to appropriate columns of the
identity matrix.

Putting those columns at first s positions, matrix (4.15) becomes
1. 0. 0. 0. −2. 2. 0. 0. 0. 0. 0. 0. 0.
0. 1. 0. 0. −5.5556 6. 0. 0. 0. 0. 0. 0. 0.
0. 0. 1. 0. −3.6667 4. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. −1. 0. 0. 0. 0. 0. 0. 0. 0.

8.9167 12.75 10.4167 9.8333 4.8333 11.5 1. 0. 0.3333 0.3333 0.5833 −0.1667 0.3333
18.5 16.5 17.1667 21.3333 5.6667 12.6667 0. 1. 0. 0. 1.5 0.3333 0.3333

 .

(4.17)

Choosing the main diagonal elements as pivots, in the first n− r = 4 steps of Gauss-Jordan elimination, we
significantly reduce the number of required arithmetic operations. That is since we do not need to update a
submatrix consisting of the first n− r = 4 rows and columns of the matrix (4.15). Continuing Gauss-Jordan
elimination on the matrix (4.17) we obtain the same matrix X (as in (4.16)), but with permuted rows,
according to the permutation (row(s + 1), row(s + 2), . . . , row(n), row(1), row(2), . . . , row(s)) as we used
for columns of the matrix (4.15).
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Shown idea can be used for all input matrices A and G. For a matrix M ∈ Cm×n and appropriate
permutations p and q, denote by Mp,• and M•,q matrices formed by permutation of rows and columns
according to permutations p and q respectively. Assume that

row = (row(1), row(2), . . . , row(n))

is the permutation of rows obtained during Gauss-Jordan elimination procedure. Since there is no pivot
element belong to rows row(s + 1), row(s + 2), . . . , row(n), columns of the matrix I (in initial matrix
[G | I]) with the same indices are unchanged during the elimination process. Consider the permutation of
columns

col = (row(s + 1), row(s + 2), . . . , row(n), row(1), row(2), . . . , row(s))

and form [
(E2)•,col O
(BA)•,col B

]
. (4.18)

The first s rows and columns of the matrix (4.18) form the identity matrix Is×s. Hence, by choosing the
first r main diagonal elements as pivot elements in second Gauss-Jordan elimination, only last n − r rows
and n + m− r columns of matrix (4.18) need to be updated in each step. After the elimination is done, the
final matrix has the form [I | X̃], where X̃ = Xcol,•. Now, matrix X is easily computed by applying the row

permutation col−1 on the matrix X̃, i.e. X = X̃col−1,•.

According to the above discussion, we can formulate the following improvement of Algorithm GJATS2PM.

Algorithm 4.2 Improved algorithm for computing the A
(2)
T,S using the Gauss–Jordan elimination.

(Algorithm GJATS2PMimp)

Require: The complex matrix A of dimensions m× n and of rank r.
1: Choose a complex matrix G of dimensions n×m and of rank 0 < s ≤ r.
2: Execute elementary row operations on the pair [G| I] to get the reduced row echelon form

E [G | I] =

[
E1G E1

O E2

]
=

[
B E1

O E2

]
.

During the elimination, maintain the permutation of rows row = (row(1), row(2), . . . , row(n)).
3: Form the permutation of columns

col = (row(r + 1), row(r + 2), . . . , row(n), row(1), row(2), . . . , row(r)).

4: Compute BA and form [
(E2)•,col O
(BA)•,col B

]
,

to transform it into [
I | X̃

]
=

[
I

[
(E2)•,col
(BA)•,col

]−1 [
O
B

] ]
.

5: Compute col−1 and return

A
(2)
R(G),N (G) = X = X̃col−1,•.

Note that, in the same way, we can construct an improvement of Algorithm GJATS2, which will be
denoted by Algorithm GJATS2imp.
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5 Numerical experiments

It is realistic to expect that two successive applications Gauss-Jordan elimination procedures contribute
to bad conditioning of numerical algorithms. We implemented Algorithm GJATS2imp and Algorithm
GJATS2PMimp in programming language C++ and tested on randomly generated test matrices. Note that
papers [12, 13], where Algorithm GJATS2 is introduced, does not contain any numerical experiments. Same
situation is in the paper [6] of J. Ji introducing the special case of Algorithm GJATS2PM for computing
Moore-Penrose inverse A† of matrix A. Hence, in this paper, we provide testing results for both Algorithm
GJATS2imp and GJATS2PMimp. Those results include the special cases of Moore-Penrose and Drazin
inverse, obtained for the choice G = A∗ and G = Ak (k = ind(A) = min{l ∈ N | rank(Al+1) = rank(Al)}),
respectively. In the case of Moore-Penrose inverse, we compared our algorithms with Matlab function pinv

which implements well-known SVD (Singular Value Decomposition) method.

Code is compiled by Microsoft Visual Studio 2010 compiler with default compiler settings. All gen-
erated matrices had unit norm, but different values of rank.

Furthermore, we list the following two more issues we used in the implementation of both Algorithm
GJATS2imp and Algorithm GJATS2PMimp:

1. While performing Gauss-Jordan elimination, we first select non-zero entries in pivot row and column
and update only those fields contained in the cross product of those entries. This improvement is based
on the fact that (in both algorithms) Gauss-Jordan elimination is applied on matrices containing non-
negligible number of zero elements.

2. Note that the matrix B in Algorithm GJATS2PMimp has exactly s unit columns and others have at
least n− s zeros. This fact can be used to significantly reduce the number of operations (also running
time) needed to compute product of matrices B and A. In other words, we can reduce the number of
multiplications to

#{bij | bij 6= 0, i = 1, 2, . . . , s, j = 1, 2, . . . ,m} · n.

where B = [bij ]1≤i≤s,1≤j≤n. Similar fact can be used for the last step of Algorithm GJATS2imp.

5.1 Numerical experiments for the Moore-Penrose inverse

In the case G = A∗ the resulting matrix X is the Moore-Penrose inverse A† of the matrix A. Tables 1 and
2 show maximal error norms for matrices A ∈ Cn×n with rank(A) = n/2 and rank(A) = 10, obtained for 20
different randomly generated test matrices.

We see that both algorithms give satisfactory results, while Algorithm GJATS2PMimp is better,
average by 3 orders of magnitude.

Average running times of our algorithms and pinv function from Matlab are shown in Table 3. Testings
are done on Intel Core-i5 720 processor (without multi-core optimization) with 4 GB of RAM. All presented
times are in seconds and obtained by averaging times on 20 test matrices.

It can be seen that Algorithm GJATS2PMimp outperforms Algorithm GJATS2imp in all test cases.
One possible reason for such behavior is the fact that Algorithm GJATS2imp needs to compute the product
A∗A (i.e. GA), where both A∗ and A are not sparse.

In the case of low-rank matrices (rank(A) = 10) we see that Algorithm GJATS2PMimp also outper-
forms pinv, while for rank(A) = n/10 results are comparable each to other. In the case rank(A) = n/2,
both algorithms are slower than pinv.

According to the above discussion, we can conclude that Algorithm GJATS2PMimp is the best choice
for computing A† of low-rank matrices.

5.2 Numerical experiments for the Drazin inverse

Algorithms GJATS2imp and GJATS2PMimp are tested in the case G = Ak (k = indA) where the result
matrix X is Drazin inverse AD of the matrix A. Running times, as well as the residual vectors are shown in
tables 4 and 5.
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Numerical results show that Algorithm GJATS2PMimp also outperformed Algorithm GJATS2imp
both in the result accuracy and running time. Especially this is the case for low-rank matrices where
Algorithm GJATS2PMimp gives the best performance.

5.3 Numerical experiments for randomly generated matrix G

Finally, we show numerical results in the case when both matrices A and G are chosen randomly. In such
case, obtained matrix X is only {2} inverse of A and therefore, we only show the norm of ‖XAX − X‖.
At it can be seen from tables 6, 7 and 8, Algorithm GJATS2PMimp clearly outperforms Algorithm
GJATS2imp in all test cases. Both algorithms have smaller running times for matrices with lower rank. It
is worth noting that accuracy also depends on the rank of both A and G and it is drastically reduced when
rank(A) ≈ rank(G).

6 Conclusions

Two main objectives are achieved in the present paper. First, we define several improvements of the algorithm
for generating the outer inverses with prescribed range and null space from [13]. Our improvements follow
corresponding modifications of the algorithm from [12] which are presented in [6]. In this way, our paper
represents a continuation of results given in [6, 11, 12, 13]. Defined algorithm represents an another algorithm
for computing outer inverses with prescribed range and null space as well as an algorithm based on the
Gauss–Jordan elimination procedure.

In addition, the paper presents a numerical study on the properties of algorithms based on the Gauss–
Jordan elimination and aimed in computation of generalized inverses. For this purpose, we give a set
of numerical examples to compare these algorithms with several well–known methods for computing the
Moore–Penrose inverse and the Drazin inverse.

In this paper we searched for the answer to the important question: how good are methods based on
two Gauss–Jordan eliminations? Our numerical experience indicates that the answer depends on the type
of inverse which is being computed and the rank of both matrices A and G:

• In the case of Moore-Penrose inverse (G = AT ), methods are stable and fast for low-rank matrices A.
Both running time and accuracy are degraded for higher rank matrices.

• In the case of Drazin inverse (G = Ak, k = ind(A)), running times are similar to the previous case,
while accuracy is more reduced with increase of rank(A).

• Finally, in the general case of arbitrary A and G, we also see that better results are obtained in cases
when rank(G) is small, while accuracy is reduced when rank(A) ≈ rank(G).

Hence, methods based on Gauss–Jordan elimination are most practically applicable as a unique tool for
computation of arbitrary low–rank generalized inverses of matrix A.
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n ‖AXA−A‖ ‖XAX −X‖ ‖AX − (AX)T ‖ ‖XA− (XA)T ‖
300 3.339e-008 8.835e-007 3.479e-009 1.172e-008
350 4.155e-008 1.899e-007 2.561e-009 8.668e-008
400 1.531e-007 2.844e-007 3.897e-009 1.318e-007
450 7.013e-008 1.515e-007 2.070e-009 3.073e-007
500 3.199e-007 4.253e-007 5.348e-009 1.273e-007
550 2.713e-008 6.711e-007 7.852e-009 7.348e-007
600 1.622e-008 5.577e-007 1.707e-009 1.281e-007
650 3.644e-007 1.374e-006 1.419e-008 4.342e-007
700 3.764e-006 1.515e-006 1.525e-008 2.146e-006

a) The case rankA = n/2.

n ‖AXA−A‖ ‖XAX −X‖ ‖AX − (AX)T ‖ ‖XA− (XA)T ‖
300 4.382e-012 2.216e-013 2.963e-013 4.002e-012
350 1.160e-012 1.299e-013 1.242e-013 4.003e-012
400 1.943e-012 1.423e-013 1.669e-013 3.319e-012
450 2.237e-012 1.864e-013 1.811e-013 2.992e-012
500 4.140e-012 1.571e-013 2.347e-013 4.421e-012
550 1.003e-011 1.584e-013 1.215e-012 8.514e-012
600 5.490e-012 2.536e-013 1.455e-012 2.307e-011
650 1.577e-012 1.985e-013 3.212e-013 4.745e-012
700 1.122e-011 2.997e-013 4.213e-013 3.457e-012

b) The case rankA = 10.

Table 1: Maximal error norms of the result of Algorithm GJATS2imp, on random matrices.

n ‖AXA−A‖ ‖XAX −X‖ ‖AX − (AX)T ‖ ‖XA− (XA)T ‖
300 5.275e-012 5.035e-010 3.298e-011 2.654e-011
350 1.276e-011 4.166e-008 1.030e-009 1.028e-009
400 4.204e-012 2.215e-009 5.602e-011 5.719e-011
450 1.057e-011 1.944e-008 4.954e-010 4.769e-010
500 9.138e-012 3.988e-008 8.342e-010 8.623e-010
550 6.269e-012 1.736e-009 3.723e-011 3.704e-011
600 1.647e-012 4.279e-009 1.160e-010 1.286e-010
650 3.299e-011 1.964e-007 3.558e-009 4.000e-009
700 8.328e-010 3.680e-009 1.370e-009 1.505e-009

a) The case rankA = n/2.

n ‖AXA−A‖ ‖XAX −X‖ ‖AX − (AX)T ‖ ‖XA− (XA)T ‖
300 1.938e-012 3.021e-015 1.016e-013 1.130e-013
350 1.397e-012 1.141e-015 5.099e-014 5.784e-014
400 1.279e-012 8.597e-016 4.093e-014 4.293e-014
450 2.930e-012 1.793e-015 9.655e-014 8.348e-014
500 1.117e-011 5.935e-015 3.084e-013 3.239e-013
550 2.989e-011 1.118e-014 7.070e-013 8.488e-013
600 3.423e-012 8.750e-016 7.263e-014 9.354e-014
650 4.555e-012 1.192e-015 9.920e-014 1.026e-013
700 8.849e-012 2.323e-015 2.003e-013 2.069e-013

b) The case rankA = 10.

Table 2: Maximal error norms of the result of Algorithm GJATS2PMimp, on random matrices.
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n pinv GJATS2imp GJATS2PMimp

300 0.016 0.040 0.006
350 0.022 0.064 0.008
400 0.031 0.092 0.011
450 0.044 0.128 0.015
500 0.057 0.173 0.020
550 0.082 0.235 0.023
600 0.098 0.293 0.026
650 0.122 0.373 0.032
700 0.128 0.461 0.037

n pinv GJATS2imp GJATS2PMimp

300 0.019 0.048 0.014
350 0.023 0.076 0.020
400 0.032 0.111 0.030
450 0.043 0.158 0.047
500 0.056 0.217 0.060
550 0.071 0.288 0.079
600 0.112 0.377 0.101
650 0.130 0.472 0.129
700 0.144 0.592 0.164

rank(A) = 10 rank(A) = n/10

n pinv GJATS2imp GJATS2PMimp

300 0.022 0.097 0.057
350 0.030 0.151 0.089
400 0.043 0.226 0.131
450 0.059 0.319 0.185
500 0.075 0.439 0.263
550 0.096 0.584 0.343
600 0.124 0.761 0.434
650 0.148 0.953 0.551
700 0.172 1.198 0.701

rank(A) = n/2

Table 3: Comparison of the running times for Matlab function pinv, Algorithm GJATS2imp and Algorithm
GJATS2PMimp. All times are in seconds.

n Running ‖Ak+1X −Ak‖ ‖XAX −X‖ ‖AX −XA‖
time [s]

300 0.056 4.666e-007 7.661e-003 1.789e-005
350 0.086 1.578e-008 5.237e-005 1.408e-007
400 0.129 9.349e-007 8.507e-003 2.957e-006
450 0.183 5.138e-007 4.327e-002 2.154e-005
500 0.256 2.154e-007 1.033e-002 1.856e-005
550 0.332 9.233e-007 5.782e-004 5.745e-007
600 0.425 4.101e-007 1.576e-001 2.103e-005
650 0.541 9.463e-008 7.659e-004 4.400e-007
700 0.698 7.869e-008 6.755e-004 1.282e-006

a) Case rank(A) = n/2.

n Running ‖Ak+1X −Ak‖ ‖XAX −X‖ ‖AX −XA‖
time [s]

300 0.006 2.501e-011 6.186e-009 3.357e-010
350 0.009 5.713e-009 2.125e-006 9.657e-008
400 0.011 2.912e-010 3.992e-008 1.641e-009
450 0.015 3.037e-010 3.718e-008 1.238e-009
500 0.018 2.923e-010 5.487e-008 2.038e-009
550 0.022 4.160e-010 2.910e-007 2.062e-009
600 0.027 1.570e-008 2.142e-006 3.913e-008
650 0.032 2.424e-010 1.584e-007 7.107e-009
700 0.038 7.359e-010 1.463e-006 1.697e-008

b) Case rank(A) = 10.

Table 4: Running times and maximal error norms of the result of Algorithm GJATS2PMimp for random matrices.
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n Running ‖Ak+1X −Ak‖ ‖XAX −X‖ ‖AX −XA‖
time [s]

300 0.097 7.519e-006 5.708e-003 6.331e-005
350 0.149 1.248e-006 1.432e-003 1.364e-005
400 0.222 1.011e-005 8.619e-002 1.722e-005
450 0.326 1.233e-005 1.792e-003 6.304e-005
500 0.438 2.347e-005 7.228e-003 8.896e-005
550 0.591 4.670e-005 1.400e-003 4.472e-004
600 0.759 5.907e-005 4.975e-003 1.184e-005
650 0.947 4.620e-006 7.662e-002 2.380e-004
700 1.202 2.145e-006 1.836e-003 4.503e-004

a) Case rankA = n/2.

n Running ‖Ak+1X −Ak‖ ‖XAX −X‖ ‖AX −XA‖
time [s]

300 0.041 1.840e-010 5.096e-009 9.251e-010
350 0.063 5.626e-010 9.591e-008 6.579e-009
400 0.091 1.853e-009 5.527e-007 7.432e-009
450 0.133 7.938e-010 1.233e-007 3.885e-009
500 0.177 4.871e-010 3.989e-008 3.767e-009
550 0.230 4.396e-009 2.045e-007 8.048e-008
600 0.305 2.577e-009 4.200e-007 3.045e-008
650 0.393 1.755e-009 1.126e-007 1.384e-008
700 0.462 8.892e-009 7.409e-007 6.244e-008

b) Case rank(A) = 10.

Table 5: Running times and maximal error norms of the result of Algorithm GJATS2imp for random matrices.

GJATS2imp GJATS2PMimp
n Running ‖XAX −X‖ Running ‖XAX −X‖

time [s] time [s]

300 0.095 8.364e-009 0.057 1.073e-010
350 0.151 1.169e-008 0.087 4.560e-010
400 0.226 2.719e-009 0.129 1.203e-010
450 0.312 2.186e-007 0.185 1.071e-010
500 0.439 7.630e-001 0.262 6.420e-010
550 0.602 6.427e-008 0.334 3.717e-010
600 0.738 3.383e-005 0.431 1.117e-006
650 0.941 1.953e-008 0.578 9.035e-010
700 1.192 3.983e-008 0.719 3.476e-010

Table 6: Running times and maximal error norms of results of Algorithms GJATS2imp and GJATS2PMimp for
randomly generated matrices A and G with rank(A) = n and rank(G) = n/2.
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GJATS2imp GJATS2PMimp
n Running ‖XAX −X‖ Running ‖XAX −X‖

time [s] time [s]

300 0.039 8.936e-007 0.006 3.939e-006
350 0.063 8.309e-006 0.008 6.899e-007
400 0.094 1.868e-007 0.012 1.113e-006
450 0.129 2.835e-007 0.015 8.278e-007
500 0.175 8.142e-008 0.020 4.975e-008
550 0.230 2.054e-007 0.023 3.943e-007
600 0.294 4.490e-007 0.023 5.761e-007
650 0.385 1.708e-006 0.036 2.072e-007
700 0.460 4.150e-007 0.040 3.417e-006

Table 7: Running times and maximal error norms of results of Algorithms GJATS2imp and GJATS2PMimp for
randomly generated matrices A and G with rank(A) = n/2 and rank(G) = 10.

GJATS2imp GJATS2PMimp
n Running ‖XAX −X‖ Running ‖XAX −X‖

time [s] time [s]

300 0.096 1.074e-001 0.056 4.654e-003
350 0.151 2.426e-003 0.087 1.641e-005
400 0.225 7.318e-002 0.130 1.077e-003
450 0.317 1.130e+000 0.204 3.251e-003
500 0.440 2.739e-001 0.295 2.423e-002
550 0.587 1.085e+001 0.364 4.872e-001
600 0.738 6.261e+000 0.469 3.024e-001
650 0.943 1.383e+000 0.603 3.619e-002
700 1.190 4.178e-001 0.739 1.240e-001

Table 8: Running times and maximal error norms of results of Algorithms GJATS2imp and GJATS2PMimp for
randomly generated matrices A and G with rank(A) = n/2 and rank(G) = n/2.


