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Abstract

We study the Hankel transform of a sequence (un)n∈N0
defined by the series reversion

of a certain rational function A(x). Using the method based on orthogonal polynomials,
we give closed-form evaluations of the Hankel transform of (un)n∈N0

and shifted sequences.
It is also shown that the Hankel transforms satisfy certain ratio conditions which recover
the sequence (an)n∈N0

whose generating function is A(x). Therefore, we indicate that the
term-wise ratio of Hankel transforms of shifted sequences are noteworthy objects of study,
giving us more insight into the processes involved in the Hankel transform.
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1 Introduction

The Hankel transform of an integer sequence has attracted an increasing amount of attention
recently. Although Hankel determinants are well-known for a long time, Layman [18] first
introduced the term “Hankel transform” in 2001. This is a transformation on the set of integer
sequences defined as follows.

Definition 1.1. For a given sequence a = (an)n∈N0
let us consider the (n+ 1)× (n+ 1) matrix

[ai+j]0≤i,j≤n. The Hankel transform h = (hn)n∈N0
of the sequence (an)n∈N0

is defined by

hn = det ([ai+j]0≤i,j≤n) , (n ∈ N0) (1)

and is denoted by h = H(a).
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It is well-known that the Hankel transform is invariant under the binomial and k-binomial
transformations [18, 29] and hence it is not invertible. The Hankel transform provides the con-
nection between certain well-known integer sequences. This is shown in the following examples.

Example 1.1. The Hankel transform of the sequence of Catalan numbers (Cn = 1
n+1

(
2n
n

)
)

A000108 is the sequence of all 1’s [18]. Thus each of the determinants

∣∣ 1
∣∣ , ∣∣∣∣ 1 1

1 2

∣∣∣∣ ,
∣∣∣∣∣∣

1 1 2
1 2 5
2 5 14

∣∣∣∣∣∣ , . . .
has value 1. A unique feature of the Catalan numbers is that the shifted sequence Cn+1 also
has a Hankel transform of all 1’s. An interesting feature of the Catalan numbers is that the
sequence Cn − δn0, or 0, 1, 2, 5, 14, 42, . . . has Hankel transform with general term −n. This
result will be proven at the end of section 5 (Corollary 5.5). Note that the evaluation of the
Hankel-like determinant det[Cλi+j]0≤i,j≤n is given in the recent paper of Krattenthaler [16].

Example 1.2. The central binomial coefficients A000984, defined by an =
(
2n
n

)
, have generating

function 1√
1−4x . The Hankel transform of the central binomial coefficients is given by hn = 2n

[24, 28]. In other words, it holds that

∣∣ 1
∣∣ = 1,

∣∣∣∣ 1 2
2 6

∣∣∣∣ = 2,

∣∣∣∣∣∣
1 2 6
2 6 20

20 70 252

∣∣∣∣∣∣ = 4, . . .

Many other Hankel transform evaluations are known in the literature. Papers [5, 26] pro-
vide the Hankel transform evaluation of the sum of two consecutive Catalan and generalized
Catalan numbers. Brualdi and Kirkland used the Hankel transformation of the large Schröder
numbers A006318 for counting a number of tiling of an aztec diamond with dominoes [2]. In
recent papers, Eğecioğlu, Redmond and Ryavec [7, 8] introduced a method for Hankel trans-
form evaluation based on differential-convolution equations which is applied to several different
sequences. Another method based on exponential generating functions is shown by Junod [13].
One of the earlier contributors to our stock of knowledge about the Hankel transform, Chris-
tian Radoux, had published several proofs of this result, along with other interesting examples
[22, 23, 25]. Different Hankel transform evaluations, as well as the evaluations of other types
of determinants, are given in the papers of Krattenthaler [14, 15].

The Gessel-Viennot-Lindström (G-V-L) method [11, 19, 31] provides the connection between
Hankel transform evaluation and lattice paths. A recent example of Hankel transform evaluation
using the G-V-L method is shown in [3]. Further connections between Hankel transforms and
lattice paths are shown for example in [12, 30, 32]. Links between orthogonal polynomials,
lattice paths and continued fractions have been studied by Viennot [31] and Flajolet [9].

In this paper, we use a method based on orthogonal polynomials for Hankel transform
evaluation which is used in [5, 26] and is similar to one used in [2].

Let (an)n∈N0
be the moment sequence with respect to some measure dλ(x). In other words,

let

an =

∫
R
xndλ(x) (n = 0, 1, 2, . . .) . (2)

Then the Hankel transform h = H(a) of the sequence a = (an)n∈N0
can be expressed by the

following relation known as the Heilermann formula (for example, see Krattenthaler [15])

hn = an+1
0 βn1 β

n−1
2 · · · β2

n−1βn. (3)
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The sequence (βn)n∈N0
appears as a sequence of coefficients in the three-term recurrence relation

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), (4)

satisfied by the sequence (Pn(x))n∈N0
of monic orthogonal polynomials with respect to the

measure dλ(x).

The following theorem and corollary provide the way how to explicitly find the measure
dλ(x) with prescribed moment sequence.

Theorem 1.1. (Stieltjes-Perron inversion formula) [4, 17] Let (µn)n∈N0
be a sequence

such that all elements of its Hankel transform are non-negative. Denote by G(z) =
∑+∞

n=0 µnz
n

the generating function of the sequence (µn)n∈N0
and F (z) = z−1G(z−1). Also let the function

λ(t) be defined by

λ(t)− λ(0) = − 1

2πi
lim
y→0+

∫ t

0

[
F (x+ iy)− F (x− iy)

]
dx. (5)

Then we have µn =
∫
R x

ndλ(x), i.e. the sequence (µn)n∈N0
is the moment sequence of the

measure λ(t).

Corollary 1.2. Under the assumptions of the previous lemma, let additionally F (z̄) = F (z).
Then

λ(t)− λ(0) = − 1

π
lim
y→0+

∫ t

0

=F (x+ iy)dx. (6)

For our further discussion we need the definition of the series reversion of a (generating)
function f(x) which satisfies f(0) = 0 (see [1]).

Definition 1.2. For a given (generating) function v = f(u) with the property f(0) = 0, the
series reversion is the sequence (sn)n∈N0

such that

u = f−1(v) = s1v + s2v
2 + · · ·+ snv

n + · · · ,

where u = f−1(v) is the inverse function of v = f(u). Note that since f(0) = 0, there must
hold s0 = f−1(0) = 0.

In this paper, we consider the Hankel transform evaluation of a series reversion of the
function x

1+αx+βx2
. As will be seen in the next section, that sequence generalizes several well-

known integer sequences. Note that the similar evaluation is given by Xin in a recent paper
[33]. In our approach (sections 3, 4 and 5), we mainly used a method based on orthogonal
polynomials.

In the last section, we show that the Hankel transforms satisfy certain ratio conditions which
recover the sequence (qn)n∈N0

whose generating function Q(x) was reverted.

2 The series reversion of x
1+αx+βx2

Let us consider the sequence (un)n∈N0
given by the series reversion of

Q(x) =
x

1 + αx+ βx2
.
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That sequence is already investigated in [1] where several expressions are given for it. Using
Definition 1.2, we find that the generating function U(x) of the sequence (un)n∈N0

is the solution
of the equation

Q(U(x)) =
U(x)

1 + αU(x) + βU(x)2
= x (7)

and is given by

U(x) =
1− αx−

√
1− 2αx+ (α2 − 4β)x2

2βx
. (8)

According to Proposition 9 in [1], the general term of the sequence (un)n∈N0
is

un =

[n−1
2

]∑
k=0

(
n− 1

2k

)
Ckα

n−2k−1βk. (9)

Consider the shifted sequences (u∗n)n∈N0
and (u∗∗n )n∈N0

defined by u∗n = un+1 and u∗∗n =
un+2. Also denote by hn, h∗n and h∗∗n , the Hankel transforms of the sequences un, u∗n and u∗∗n
respectively. The Hankel transforms h∗n and h∗∗n will be used in the evaluation of the Hankel
transform hn.

Putting α = 2 and β = 1 in (8) gives the generating function

1− 2x−
√

1− 4x

2x
= −1 +

+∞∑
n=0

Cnx
n

of the sequence (Cn − δn0)n∈N0
which is mentioned in Example 1.1.

More generally, if we put α = z + 1 and β = z we obtain the generating function of the
sequence ((Nn(z)− δn0)/z)n∈N0

where Nn(z) is the n-th Narayana polynomial. This comes di-
rectly from the expression for the generating function of Narayana polynomials (see for example
[6] or [20]).

Furthermore, note that for specific values of α and β, the sequence (u∗n)n∈N0
reduces to the

following well-known sequences:

• Motzkin numbers A001006, for α = β = 1. This follows directly from the fact that U(x)/x
reduces to M(x) = (1 − x −

√
1− 2x− 3x2)/(2x2) which is the generating function of

Motzkin numbers [3, 27].

• Aerated Catalan numbers A126120, for α = 0 and β = 1. Again this follows from the fact
that U(x)/x reduces to (1−

√
1− 4x2)/(2x2) which is the generating function of aerated

Catalan numbers [27].

We show later that the corresponding expressions for hn and h∗n also reduce to known ones
in the mentioned special cases.

Note that Q(x) is the generating function of the sequence (qn)n∈N0
satisfying the linear

difference equation
qn+2 + αqn+1 + βqn = 0
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with initial conditions q0 = 0 and q1 = 1. Therefore, the closed-form expression for qn is given
by

qn =
(−1)n

2n
√
α2 − 4β

[(
α−

√
α2 − 4β

)n
−
(
α +

√
α2 − 4β

)n]

=
(−1)n−1

2n−1

bn−1
2
c∑

k=0

(
n

2k + 1

)
(α2 − 4β)kαn−2k−1.

(10)

Example 2.1. The first few terms of the previously mentioned sequences are:

un =
(
0, 1, α, α2 + β, α3 + 3αβ, α4 + 6α2β + 2β2, α5 + 10α3β + 10αβ2, α6 + 15α4β + 3α2β2 + 5β3 . . .

)
qn =

(
0, 1,−α, α2 − β, 2αβ − α3, α4 − 3α2β + β2,−α5 + 4α3β − 3αβ2, . . .

)
hn =

(
0,−1,−αβ,−α2β3 + β4,−α3β6 + 2αβ7, . . .

)
h∗n =

(
1, β, β3, β6, β10, . . .

)
h∗∗n =

(
α, α2β − β2, α3β3 − 2αβ4, α4β6 − 3α2β7 + β8, . . .

)
It can be observed that the following ratio conditions are satisfied by the first few terms of

the previously mentioned sequences

(−1)n+1hn+1

h∗n
= qn+1,

(−1)n+1h∗∗n
h∗n

= qn+2.

These conditions will be proven for general n in the last section of the paper.

3 Moment representations

The following theorem gives an explicit expression for the weight function whose moment
sequence is (un)n∈N0

. The proof is based on the Stieltjes-Perron inversion formula (Theorem
1.1).

Theorem 3.1. The sequence (un)n∈N0
, is the moment sequence for the weight function:

w(x) = wac(x) +
α−

√
α2 − 4β

2β
δ(x) (11)

where

wac(x) =


√

4β − (x− α)2

2πβx
, x ∈ [α− 2

√
β, α + 2

√
β]

0, otherwise
.

and δ(x) is the Dirac delta function.

Proof. We start from

F (z) = z−1U(z−1) =
z − α−

√
z2 − 2αz + α2 − 4β

2βz
=
z − α−

√
(z − α)2 − 4β

2βz
,

and let x1,2 = α± 2
√
β be the branch points of the function

ρ(z) =
√

(z − α)2 − 4β.
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We take a regular branch of ρ(z) such that arg(z − x1) = arg(z − x2) = 0 for z ∈ (x2,+∞).
The selected branch is defined on C \ (x1, x2) and we have F (z) = F (z). By direct evaluation
we find the following expression for the primitive function of F (z):

F1(z) =

∫
F (z)dz =

1

2β

[
z − ρ(z)−

(
α−

√
α2 − 4β

)
L1(z) + αL2(z)−

√
α2 − 4βL3(z)

]
where

L1(z) = log z,

L2(z) = log (z − α + ρ(z)) ,

L3(z) = log
(
α2 − 4β − αz + ρ(z)

√
α2 − 4β

)
.

In the previous expression, we take a regular branch of the log function on the set C \ [0,+∞)
such that limy→0+ log(x+ iy) = log x when x > 0. The following then holds

Gρ(x) = lim
y→0
=ρ(x+ iy) =

{ √
4β − (x− α)2, x ∈ (x1, x2)

0, otherwise
. (12)

Let Gk(x) = limy→0+ Lk(x+ iy) where k = 1, 2, 3. It is well-known that

G1(x) = lim
y→0+

= log(x+ iy) =


π, x < 0
π
2
, x = 0

0, x > 0

. (13)

Similarly there holds

G2(x) = lim
y→0
=L2(x+ iy) =



π, x < x1

π + arctan

√
4β−(x−α)2
x−α , x ∈ [x1, α)

π
2
, x = α

arctan

√
4β−(x−α)2
x−α , x ∈ (α, x2]

0, x > x2

(14)

and

G3(x) = lim
y→0
=L3(x+ iy) =



π, x < x1

π + arctan

√
4β−(x−α)2

√
α2−4β

α2−4β−αx , x ∈ [x1,
α2−4β
α

)
π
2
, x = α2−4β

α

arctan

√
4β−(x−α)2

√
α2−4β

α2−4β−αx , x ∈ (α
2−4β
α

, x2]

0, x > x2

. (15)

Now from Corollary 1.2 we obtain λ(t) = − 1
π
(G(t)−G(0)) where the function G(x) is given by

G(x) = lim
y→0
=F1(x+ iy)

=
1

2β

[
−Gρ(x)−

(
α−

√
α2 − 4β

)
G1(x) + αG2(x)−

√
α2 − 4βG3(x)

]
.

Expression (11) is now obtained by differentiation of λ(t) in the sense of distributions. Note
that the functions Gρ(x), G2(x) and G3(x) are differentiable for all x ∈ (x1, x2) and therefore
they form an absolutely continuous part of the measure dλ(x) (given by wac(x)) while G1(x)
forms the delta function term.

This completes the proof of the theorem.
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Let ūn be the n-th moment of the weight function wac(x), i.e. ūn =
∫
R x

nwac(x)dx, for
n ∈ N0. From Theorem 3.1 we obtain

un =

∫
R
xnw(x)dx =

∫
R
xnwac(x)dx+

α−
√
α2 − 4β

2β

∫
R
xnδ(x)dx

= ūn +
α−

√
α2 − 4β

2β
δn0.

where δn0 is Kronecker delta. In other words, the sequences (un)n∈N0
and (ūn)n∈N0

differ only
in the elements with index n = 0. Hence, it holds that

ūn =

 −α +
√
α2 − 4β

2β
, n = 0

un , n ≥ 1
. (16)

As we will see in section 5, the Hankel transform of the sequence (un)n∈N0
will be evaluated

using the Hankel transforms of the sequences (ūn)n∈N0
and (u∗n)n∈N0

.

Moment representations of the shifted sequences (u∗n)n∈N0
and (u∗∗n )n∈N0

holds directly from
Theorem 3.1.

Corollary 3.2. The weight function of the sequence (u∗n)n∈N0
= (un+1)n∈N0

is

w∗(x) =


√

4β − (x− α)2

2πβ
, x ∈ [α− 2

√
β, α + 2

√
β]

0, otherwise.
(17)

Corollary 3.3. The weight function of the sequence (u∗∗n )n∈N0
= (un+2)n∈N0

is

w∗∗(x) =

 x
√

4β − (x− α)2

2πβ
, x ∈ [α− 2

√
β, α + 2

√
β]

0, otherwise.
(18)

4 Hankel transforms of the sequences u∗n and u∗∗n

In order to compute the Hankel transforms h∗n and h∗∗n using the Heilermann formula (3), we
need the coefficients αn and βn of the three-term recurrence relation. These coefficients will be
obtained by applying weight function transformations. The following lemmas provide relations
between the coefficients αn and βn of the original and transformed weight function.

Lemma 4.1. Let w(x) and w̃(x) be weight functions and denote by (πn(x))n∈N0
and (π̃n(x))n∈N0

the corresponding orthogonal polynomials. Also denote by (αn)n∈N0
, (βn)n∈N0

and (α̃n)n∈N0
,
(
β̃n

)
n∈N0

the three-term relation coefficients corresponding to w(x) and w̃(x) respectively. The following
transformation formulas are valid:

(1) If w̃(x) = Cw(x) where C > 0 then we have α̃n = αn for n ∈ N0 and β̃0 = Cβ0, β̃n = βn
for n ∈ N. Additionally holds π̃n(x) = πn(x) for all n ∈ N0.

(2) If w̃(x) = w(ax + b) where a, b ∈ R and a 6= 0 there holds α̃n = αn−b
a

for n ∈ N0 and

β̃0 = β0
|a| and β̃n = βn

a2
for n ∈ N. Additionally holds π̃n(x) = 1

an
πn(ax+ b).
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Proof. In both cases, we directly check the orthogonality of π̄n(x) and obtain the coefficients
ᾱn and β̄n by putting π̄n(x) in the three-term recurrence relation for πn(x).

Lemma 4.2. (Linear multiplier transformation) [10] Consider the same notation as in
Lemma 4.1. Let the sequence (rn)n∈N0

be defined by

r0 = c− α0, rn = c− αn −
βn
rn−1

(n ∈ N0). (19)

If w̃(x) = (x− c)w(x) where c < inf supp(w), there holds

β̃0 =

∫
R
w̃(x) dx, β̃n = βn

rn
rn−1

, (n ∈ N),

α̃n = αn+1 + rn+1 − rn, (n ∈ N0).

(20)

Now we can apply the transformation method to the weight functions w∗(x) and w∗∗(x).

Theorem 4.3. The Hankel transform of the sequence (u∗n)n∈N0
is given by

h∗n = β(n+1
2 ). (21)

Proof. We use the Heilermann formula (3) and the weight function transformation given by
Lemma 4.1. Recall that

w∗(x) =


√

4β − (x− α)2

2πβ
, x ∈ [α− 2

√
β, α + 2

√
β]

0, otherwise.

.

Hence, we start from the monic Chebyshev polynomials of the second kind

Q(0)
n (x) = Sn(x) =

sin
(
(n+ 1) arccosx

)
2n ·
√

1− x2

which are orthogonal with respect to the weight function

w(0)(x) =

{√
1− x2, x ∈ [−1, 1]

0, otherwise
.

The corresponding coefficients αn and βn of the three-term recurrence relation are

β
(0)
0 =

π

2
, β(0)

n =
1

4
(n ≥ 1), α(0)

n = 0 (n ≥ 0) .

Now, we introduce a new weight function w(1)(x) by

w(1)(x) = w(0)

(
x− α
2
√
β

)
=


√

4β − (x− α)2

2
√
β

, x ∈ [α− 2
√
β, α + 2

√
β]

0, otherwise

.
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and use part (2) of Lemma 4.1 with a = 1/(2
√
β) and b = −α/(2

√
β). Hence we obtain

α(1)
n = α (n ∈ N0), β

(1)
0 = π

√
β, β(1)

n = β (n ∈ N). (22)

Observe that w∗(x) = w(1)(x)/(π
√
β). From part (1) of Lemma 4.1 we see that α∗n = α

(1)
n = α

for every n ∈ N0 and β∗n = β
(1)
n = β, while β∗0 = β

(1)
0 /(π

√
β) = 1. Hence

α∗n = α (n ∈ N0), β∗0 = 1, β∗n = β (n ∈ N). (23)

The statement of the theorem now holds directly from (23) and the Heilermann formula (equa-
tion (3)):

h∗n = (u∗0)
n+1(β∗1)n(β∗2)n−1 · · · β∗n = β(n+1

2 ). (24)

Now observe that the expression for h∗n does not depend on α, which means that all sequences
obtained for a fixed value of β have the same Hankel transform. Moreover, for β = 1 we have
h∗n = 1, which is the Hankel transform of both the sequence of aerated Catalan numbers and
the sequence of Motzkin numbers.

Theorem 4.4. The Hankel transform of the sequence (u∗∗n )n∈N0
is given by

h∗∗n =
β(n+1

2 )

2n+1
√
α2 − 4β

[
(α +

√
α2 − 4β)n+2 − (α−

√
α2 − 4β)n+2

]
. (25)

Proof. Recall that w∗∗(x) = xw∗(x). Hence, we need to apply one linear multiplier transforma-
tion to the weight function w∗(x). According to Lemma 5.1, we introduce the sequence (rn)n∈N0

by

r0 = −α∗0 = −α, rn = −α∗n −
β∗n
rn−1

(n ∈ N)

and then obtain the coefficients β∗∗n by

β∗∗0 =

∫ +∞

−∞
w∗∗(x) dx = α,

β∗∗n = β∗n ·
rn
rn−1

(n ≥ 1).

Recall that coefficients α∗n and β∗n are given by (23). Since we are not able to guess a nice
solution of this recursive equation with initial value β∗∗0 = α, we have to use another approach.
According to the Heilermann formula (3) there holds

h∗∗n+1

h∗∗n
=

(β∗∗0 )n+1(β∗∗1 )n · · · (β∗∗n+1)

(β∗∗0 )n(β∗∗1 )n−1 · · · (β∗∗n )
= β∗∗0 β

∗∗
1 β
∗∗
2 · · · β∗∗n+1

=α · β∗1
r1
r0
· β∗2

r2
r1
· · · β∗n+1

rn+1

rn
= α · βn+1 rn+1

r0

=− βn+1rn+1,

which implies

rn = − h∗∗n
βnh∗∗n−1

, (n ≥ 1).
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By replacing the previous expression in

rn = −α− β

rn−1
,

we obtain the following difference equation

h∗∗n = αβnh∗∗n−1 − β2nh∗∗n−2, (n ≥ 2). (26)

where the initial values are given by h∗∗0 = α and h∗∗1 = α2β−β2. In order to solve the equation
(26), we introduce a new sequence (yn)n∈N0

defined by

yn = h∗∗n β
−n2

2 .

Substituting into the previous equation yields

yn = α
√
βyn−1 − β2yn−2. (27)

By solving the linear difference equation (27) with the initial values y0 = α and y1 = α2
√
β −

β
√
β, we obtain

yn =
β

n
2

2n+1
√
α2 − 4β

[
(α +

√
α2 − 4β)n+2 − (α−

√
α2 − 4β)n+2

]
.

Finally, by replacing h∗∗n = ynβ
n2

2 we finish the proof of the theorem.

5 The Hankel transforms of the sequences ūn and un

Recall that the sequence

ūn =

 −α +
√
α2 − 4β

2β
, n = 0

un , n ≥ 1

is the moment sequence of the absolutely continuous part wac(x) of the weight w(x), which is
given by

wac(x) =


√

4β − (x− α)2

2πβx
, x ∈ [α− 2

√
β, α + 2

√
β]

0, otherwise
.

Observe that wac(x) = w∗(x)/x. We can derive the coefficients ᾱn and β̄n, corresponding to
the weight wac(x), by applying a linear divisor transformation given by the following lemma.

Lemma 5.1. (Linear divisor transformation) [10] Consider the same notation as in the
Lemma 4.1. Let the sequence (rn)n∈N0

be defined by

r−1 = −
∫
R
w̃(x) dx, rn = c− αn −

βn
rn−1

(n ∈ N0). (28)

If w̃(x) = w(x)
x−c , where c < inf supp(w) there holds

α̃0 = α0 + r0, α̃n = αn + rn − rn−1,

β̃0 = −r−1, β̃n = βn−1
rn−1
rn−2

(n ∈ N).
(29)
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Theorem 5.2. The Hankel transform of the sequence (ūn)n∈N0
is given by

h̄n = β(n+1
2 )

(
α−

√
α2 − 4β

2β

)n+1

. (30)

Proof. According to Lemma 5.1 we need to introduce the sequence

rn = −α∗n −
β∗n
rn−1

(n ∈ N0), r−1 = −
∫
R
wac(x)dx = −α−

√
α2 − 4β

2β
(31)

and compute coefficients β̄n by

β̄0 = −r−1 =
α−

√
α2 − 4β

2β
, β̄n = βn−1

rn−1
rn−2

(n ∈ N).

Recall that
α∗n = α (n ∈ N0), β∗0 = 1, β∗n = β (n ∈ N).

We proceed similarly as in the case of the sequence u∗∗n (Theorem 4.4). According to the
Heilermann formula (equation (3)), it holds that:

h̄n+1

h̄n
= β̄0β̄1β̄2 · · · β̄n+1

=(−r−1) · β∗0
r0
r−1
· β∗1

r1
r0
· · · β∗n

rn
rn−1

=− βnrn,

which implies

rn = − h̄n+1

βnh̄n
.

Recurrence relation (31) now becomes

h̄n+1 = αβnh̄n − β2nh̄n−1. (32)

We introduce a new sequence (vn)n∈N0
defined by vn = h̄nβ

−n2

2 . Substituting into the previous
equation yields:

vn+1 −
α√
β
vn + vn−1 = 0, (n ≥ 1). (33)

The first two values of the sequence (vn)n∈N0
are given by

v0 =
α−

√
α2 − 4β

2β
, v1 =

α2 − 2β − α
√
α2 − 4β

2β
√
β

.

By solving the linear difference equation (33) we obtain

vn =
1

2n+1β
n+2
2

(
α−

√
α2 − 4β

)n+1

and hence

h̄n = β(n+1
2 )

(
α−

√
α2 − 4β

2β

)n+1

. (34)

This completes the proof of the theorem.
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The following lemma shows the connection between Hankel transforms of sequences which
differ only in the term with index 0.

Lemma 5.3. Let (un)n∈N0
and (ūn)n∈N0

be sequences which differ only in the term with index

0, i.e. un = ūn for all n ≥ 1. The Hankel transforms (hn)n∈N0
and

(
h̄n
)
n∈N0

of these sequences
are related by

hn = h̄n + (u0 − ū0)h∗∗n−1 (n ∈ N0),

where (h∗∗n )n∈N0
is the Hankel transform of the sequence (u∗∗n )n∈N0

, given by u∗∗n = un+2 for all
n ≥ 0 and h∗∗−1 = 1.

Proof. Notice at the outset that the determinant hn = det[ui+j−2]1≤i,j≤n can be written in the
form of

hn =
n−1∑
k=0

ukM1,k+1 (35)

where M1,k is the minor corresponding to the matrix element (1, k). Also we can write h̄n in
the same form

h̄n =
n−1∑
k=0

ūkM̄1,k+1. (36)

Note that the minors M1,k+1 and M̄1,k+1 are equal for every k ≥ 0. Hence, we have

hn − h̄n = (u0 − ū0)M1,1.

Finally, we obtain the statement of the lemma by noticing that

M1,1 = det[ui+j]1≤i,j≤n−1 = det[ui+j+2]0≤i,j≤n−2 = det[u∗∗i+j]0≤i,j≤n−2 = h∗∗n−1.

From Lemma 5.3 and expressions (30) and (25) (Theorem 5.2 and Theorem 4.4) we obtain
the closed-form expression for (hn)n∈N0

.

Corollary 5.4. The Hankel transform of the sequence (un)n∈N0
is given by

hn =
β(n

2)

2n
√
α2 − 4β

[(
α−

√
α2 − 4β

)n
−
(
α +

√
α2 − 4β

)n]
. (37)

By taking α = z + 1 and β = z, we obtain the Hankel transform of ((Nn(z)− δn0)/z)n∈N0
,

where Nn(z) is the n-th Narayana polynomial. The case β = α2/4 is notweworthy. Expression
(37) cannot be used in that case, since the denominator

√
α2 − 4β is zero. However, due to the

polynomiality (and hence continuity) of the expression hn = hn(α, β) we can find hn(α, α2/4)
by

hn(α, α2/4) = lim
β→α2/4

hn(α, β).

By setting t =
√
α2 − 4β we have

lim
β→α2/4

hn(α, β) = lim
β→α2/4

β(n
2)

2n−1
·

(
α−

√
α2 − 4β

)n
−
(
α +

√
α2 − 4β

)n
2
√
α2 − 4β

=
αn(n−1)

2n2−1 lim
t→0

(α− t)n − (α + t)n

2t
= −nα

n2−1

2n2−1 .
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Therefore, the final expression for hn(α, α2/4) is

hn(α, α2/4) = −n
(α

2

)n2−1
.

If we put α = 2, we obtain the result mentioned in Example 1.1.

Corollary 5.5. The Hankel transform of the sequence (Cn − δn0)n∈N0
is the sequence with

general term hn = −n.

6 Ratio relations and further research

We can easily check (using expressions (10), (21), (25) and (37)) that the following ratio relations

(−1)n+1hn+1

h∗n
= qn+1,

(−1)n+1h∗∗n
h∗n

= qn+2 (n ∈ N0) (38)

are satisfied. Those relations are general since the coefficients α and β do not appear explicitly.
This result suggests the formulation of the following problem which we leave for further research.

Problem 6.1. Characterize the sequences q = (qn)n∈N0
(i.e. generating functions Q(x)) such

that the Hankel transforms h = H(u), h∗ = H(u∗) and h∗∗ = H(u∗∗), where u = (un)n∈N0
is

the series reversion of Q(x) while u∗ = (un+1)n∈N0
and u∗∗ = (un+2)n∈N0

, satisfy ratio relations
(38).
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of Schröder numbers, J. Combin. Theory Ser. B 94 (2005), 334-351.

[3] N.T. Cameron, A.C.M. Yip, Hankel determinants of sums of consecutive Motzkin num-
bers, Linear Algebra Appl. 434 (2011), 712–722.

[4] T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New
York, 1978.

13
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