
Optimization of Variable-length Code for Data

Compression of memoryless Laplacian source
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Abstract

In this paper we present the efficient technique for compression and cod-

ing of memoryless Laplacian sources, which uses variable-length code (V LC).

That technique is based on combination of two companding quantizers in the

first case, and three companding quantizers in the second case. These quantiz-

ers have disjoint support regions, different number of representation levels and

different compressor functions. The closed-form expressions are obtained for

the distortion, average bit rate and signal to quantization noise ratio (SQNR).

Presented numerical results point out the effects of rate-distortion (R-D) op-

timization on the system performances. Since our model assumes the general

case of Laplacian distribution, it has a wide applications like coding of speech

and images. It is shown that the difference of SQNR of our model and classical
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companding quantizer based model is 2.8dB for two quantizers and 4.2dB in

three quantizers model. We have also made a comparison between our model,

combination of the optimal uniform quantizer and Huffmann lossless coder and

combination of optimal companding quantizer and simple lossless coder [16].

Keywords: variable-length code; memoryless Laplacian source; multi-resolution

scalar quantizer

1 Introduction

Quantizers play an important role in the theory and practice of modern day signal

processing. They are applied for the purpose of storage and transmission of continual

signals. All data-compression schemes assume a digital source of information with

known statistical properties as an input. The output of the source is a set of symbols

with a given probability of occurrence. Compression is achieved by assigning shorter

codewords to the more frequent symbols and longer codewords to the less frequent

ones. The compressed output is simply the concatenation of such codewords. This

is an important application of variable-length codes.

Many sources that we deal with, have distribution which is quite peaked at zero.

For example, speech consists mainly of silence. Therefore, samples of speech will be

zero or close to zero with high probability. On the other hand, image pixels do not

have any attraction to small values. But there is high degree of correlation among

pixels. Therefore, a large number of the pixel-to-pixel differences will have values

close to zero. In these situations, Laplacian distribution provide a close match to

data. Memoryless Laplacian source is commonly used and important in many areas

of telecommunications and computer science.
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An efficient algorithm for the design of the optimal quantizer for the source with

known distribution was developed by Lloyd and Max [1]. However, this method is

very time consuming for the large number of quantization levels. One solution which

overcomes these difficulties is the companding model [2]-[3]. Quantizers based on the

companding model have simple realization structure and performances close to the

optimal ones. Its simplicity, parameters, and many characteristics can be described

in closed form relations. Examples are: speech signal, images, video signal, etc. The

design of such quantizers is also more efficient than Lloyd-Max’s algorithm since

it does not require the iterative method. This difference is very notable for some

commonly used sources including the Laplacian source.

For the purpose of transmission, processing and storing that signals, simple and

fast compression algorithms are desirable. One solution is given in [4] where a

uniform quantizer is considered. In paper [5] lossless compression algorithm pro-

vided only the additional compression of the digitized signal (PCM), but with-

out providing a quality improvement. In [6] forward adaptive technique is given

for Lloyd-Max’s algorithm implementation in speech coding algorithm. Fixed-rate

scalar quantizers for Laplacian source have already been the topic of earlier research

[7]-[8]. The well-known efficient algorithm for lossless coding of the information

sources with known symbol probability, is Huffman algorithm [9]-[10]. It requires

a very complex realization structure and also is time consuming. Hardware im-

plementations of popular compression algorithms such as the Huffman coding [11],

Lempel-Ziv coding [12], binary arithmetic coding [13], and the Rice algorithm [14]

have been reported in the literature. A 12-bit A/D with a simplified Huffman en-

coder is presented in [15]. Compression algorithm for Laplacian source, consisting

of an optimal bounded companding quantizer and simple lossless coder is given in
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[16]. Multi-resolution scalar quantizers are described in [17].

In this paper we give the simple solution based on two non-uniform companding

quantizers, in the first case, and three non-uniform companding quantizers, in the

second case. For a fixed value of average bitrate R, we provide the optimization

of region bounds as well as the number of quantization levels of each companding

quantizer.

We compare our model to the combination of the optimal uniform quantizer and

Huffmann lossless coder. It is shown that our model possesses better results, with

much simple and more efficient realization structure. Comparation is also made

with the combination of optimal companding quantizer and simple lossless coder

[16]. Model in paper [16] is performing coding and decoding the groups of three

samples and transmitting the side information about number of bits (bitrates R− 1

or R) used for the coding. In our paper coding and decoding is performed sample

by sample and transmitted side information is used for determining which quantizer

corresponds to which sample. Advantages of our model are better results and higher

flexibility in quantizer designing (changeability of number of quantizers and their

bitrates), with slightly more complex realization structure.

We also deal with an application of our model in speech signal coding. It is used

for compression of the sample speech signal and the obtained experimental results

are compared with theory.

This paper is organized as follows. Section 2 recalls some basic theories of quan-

tizers and companding model. In Section 3 we give a description of the variable-

length code for data compression of memoryless Laplacian source, which consists of

two and tree companding quantizers. Section 4 contains some numerical examples.

We also performed an optimization of the quantizer distortion for prescribed value

4



of average bit rate. In Section 5, for the purpose of testing, we considered the adap-

tive variant of our three quantizer V LC model which is tested on the sample speech

signal. Section 6 concludes the paper by summarizing the key features of the coder

design and its applications.

2 Scalar quantizers and companding technique

Assume that an input signal is characterized by continuous random variable X with

probability density function (PDF ) p(x). The first approximation to the long-time-

averaged PDF of amplitudes is provided by a two-sided exponential or Laplacian

model. Waveforms are sometimes represented in terms of adjacent-sample differ-

ences. The PDF of the difference signal for an image waveform follows the Laplacian

function [2,p33]. Laplacian source can be also used for modelling of the speech signal

[21,p384]. In the rest of the paper we assume that information source is Laplacian

source with memoryless property and zero mean value. The PDF of that source is

given by:

p(x) =
1√
2σ2

e−
|x|

√
2

σ , (1)

where x is zero-mean statistically independent Laplacian random variable of variance

σ2.

The sources with exponential and Laplacian PDF are commonly encountered

and the methods for designing quantizers for these sources are very similar. Without

loss of generality we can suppose that σ = 1 and expression (1) becomes:

p(x) =
1√
2
e−

√
2|x|. (2)

An N -point fixed rate scalar quantizer is characterized by the set of real numbers
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t1, t2, . . . , tN , called decision thresholds, which satisfy

−∞ = t0 < t1 < · · · < tN−1 < tN = +∞, (3)

and set y1, y2, . . . , yN , called representation levels, which satisfy

yj ∈ αj = (tj−1, tj ], for j = 1, . . . , N. (4)

Sets α1, α2, . . . , αN form the partition of the set of real numbers R and are called

quantization cells. The quantizer is defined as many-to-one mapping Q : R → R,

Q(x) = yj where x ∈ αj . In practice, input signal value x is discretized (quantized)

to the value yj . Cells α2, α3, . . . , αN−1 are inner cells (or granular cells) while α1

and αN are outer cells (or overload cells). In such way, cells α2, α3, . . . , αN−1 form

granular while cells α1 and αN form an overload region. Since variable-rate and

scalar quantizers are the only types of quantizers considered in the paper, we just

briefly recall their properties.

The quality of the quantizer is measured by distortion of resulting reproduction

in comparison to the original one. Mostly used measure of distortion is mean-squared

error. It is defined by:

D(Q) = E(X −Q(X))2 =
N∑
i=1

∫ ti

ti−1

(x− yi)
2p(x)dx. (5)

The N -point quantizer Q is optimal for the source X if there is no other N -point

quantizer Q1 such that D(Q1) < D(Q). We also define granular distortion Dg(Q)

and overload Dol(Q) distortion by:

Dg(Q) =

N−1∑
j=2

∫ tj

tj−1

(x− yj)
2p(x)dx, (6)

Dol(Q) =

∫ t1

−∞
(x− y1)

2p(x)dx+

∫ +∞

tN−1

(x− yN )2p(x)dx. (7)
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Obviously follows that D(Q) = Dg(Q) +Dol(Q).

Considerable amount of work has been focused on the design of optimal quan-

tizers for compression sources in image, speech, and other applications. Denote by

D∗
N the distortion of an optimal N -point quantizer. As it was discovered by Panter

and Dite [11], for large N holds D∗
N

∼= c∞/N . Here c∞ is the Panter-Dite constant

c∞ =
1

12

(∫ +∞

−∞
p1/3(x)dx

)3

. (8)

The general method for the design of an optimal N -point quantizer for the given

source X is Lloyd-Max algorithm [1], [2], [20]. Due to the computational complexity

of this method, it is not suitable for the design of optimal quantizers with more than

128 levels. Hence, other methods for the construction of nearly optimal quantizers

for large number of quantization levels are developed. One of the commonly used

techniques for this purpose is the companding technique [12]. It forms the core of the

ITU-T G.711 PCM standard, recommended for coding speech signals. Companding

technique consists of the following steps:

1) Compress the input signal x by applying the compressor function c(x).

2) Apply the uniform quantizer Qu on the compressed signal.

3) Expand the quantized version of the compressed signal using an inverse com-

pressor function c−1(x).

The corresponding non-uniform quantizer consisting of a compressor, a uniform

quantizer, and an expander in cascade is called companding quantizer (compandor).

Hence, the companding quantizer can be represented as Q(x) = c−1(Qu(c(x))),

where Qu(x) is uniform quantizer in the interval [−1, 1]. Denote by tu,i and yu,i

decision thresholds and representation levels of the uniform quantizer Qu(x). Cor-

responding values ti and yi of the companding quantizer Q(x) can be determined as
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the solutions of the following equations:

c(ti) = tu,i = −1 +
2i

N
, c(yi) = yu,i = −1 +

2i− 1

N
. (9)

There are several ways how to choose the compressor function c(x) for compression

law. Originally, in [12] and also in [8], compressor function c0 : R → [−1, 1] is defined

as

c0(x) =

x∫
−∞

p1/3(x)dx

+∞∫
−∞

p1/3(x)dx

. (10)

In this paper, we use the similar definition of the compressor function which will be

described in the following section.

3 Description and construction of VLC coder and de-

coder

In this section we describe our model consisting of two and three companding quan-

tizers, in the first and the second case respectively. Optimization of the bounds

of support regions and numbers of representation levels, is performed for a fixed

average bitrate R.

3.1 Two companding quantizers VLC model

The coder consists of two companding quantizers with different number of repre-

sentation levels and different compressor functions. First quantizer Q1 is applied

on the inner segment I = [−t1, t1], while the second quantizer Q2 is applied on the

outer segment O = (−∞,−t1]∪ [t1,+∞). Value t1 is called the threshold value. We

denote by Ni = 2ki the number of the quantization levels of quantizer Qi, where ki

8



is number of bits per sample and i = 1, 2. Let c1 : I → [−1, 1] and c2 : O → [−1, 1]

be the corresponding compressor functions. An optimal compressor function c1 is

given by the following expression (Judell and Scharf, [18]):

c1(x) = −1 + 2

x∫
−t1

p1/3(x)dx

t1∫
−t1

p1/3(x)dx

, −t1 < x < t1. (11)

By analogy, the optimal compressor function c2(x) is given by:

c2(x) =



−1 + 2

x∫
−∞

p1/3(u)du

−t1∫
−∞

p1/3(u)du+
+∞∫
t1

p1/3(u)du

, −∞ < x < −t1

−1 + 2

−t1∫
−∞

p1/3(u)du+
x∫

t1

p1/3(u)du

−t1∫
−∞

p1/3(u)du+
+∞∫
t1

p1/3(u)du

, t1 < x < ∞

. (12)

Since the function p(x) is symmetric, by direct evaluation we obtain, for every t1 > 0,

that: ∫ −t1

−∞
p1/3(x)dx =

∫ +∞

t1

p1/3(x)dx = 3 3

√
σ

4
exp

(
−
√
2t1
3

)
.

Hence for t1 > 0, compressor functions c1 and c2 can be expressed as:

c1(x) =


−

1−exp
(√

2x
3σ

)
1−exp

(
−

√
2t1
3σ

) , −t1 < x < 0

1−exp
(
−

√
2x

3σ

)
1−exp

(
−

√
2t1
3σ

) , 0 < x < t1

,

c2(x) =

 −1 + exp
(√

2
3σ (x+ t1)

)
, −∞ < x < −t1

1− exp
(
−

√
2

3σ (x− t1)
)
, t1 < x < +∞

.

(13)

The total signal distortion D is given by D = Di + Do where Di and Do are

distortions for the inner and outer regions respectively. They can be approximated
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using Bennet integral as follows

Di =
2

3N2
1

 t1∫
0

p1/3(u)du

3

=
9σ2

(
1− exp

(
−

√
2t1
3σ

))3
2N2

1

,

Do =
2

3N2
2

 +∞∫
t1

p1/3(u)du

3

=
9σ2 exp

(
−

√
2t1
σ

)
2N2

2

.

(14)

According to the last expression we see that total distortion D is the function of

the parameters N1, N2 and t1, i.e. we may write:

D = D(N1, N2, t1) =
9σ2

(
1− exp

(
−

√
2t1
3σ

))3
2N2

1

+
9σ2 exp

(
−

√
2t1
σ

)
2N2

2

. (15)

Similarly the average number of bits per sample R is given by R = p1 log2N1 +

p2 log2N2, where p1 and p2 are probabilities that one signal sample will belong to I

and O respectively. Since

p1 =

t1∫
−t1

p(u)du = 1− exp

(
−
√
2t1
σ

)
, (16)

and p2 = 1− p1 we see that R can be also expressed as a function of N1, N2 and t1

in the following way:

R = R(N1, N2, t1)

=

(
1− exp

(
−
√
2t1
σ

))
(log2N1 + 1)

+ exp

(
−
√
2t1
σ

)
(log2N2 + 1) . (17)

The additional bit in expression (17) determines which quantizer is used in the

coding process. This information is necessary for decoding. Note that threshold t1

can be computed directly from the value R using:

t1 = − σ√
2
ln

(
R− log2N1 − 1

log2N2 − log2N1

)
. (18)
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3.2 Three companding quantizers VLC model

The coder consists of three companding quantizers with different number of repre-

sentation levels and different compressor functions. First quantizer Q1 is applied on

the inner segment, I1 = [−t1, t1], second quantizer Q2 is applied on the second inner

segment I2 = [−t2,−t1]∪ [t1, t2], while the third quantizer Q3 is applied on the outer

segment O = (−∞, t2]∪ [t2,+∞). We say that values t1, t2 and t3 are threshold val-

ues. We also denote by Ni = 2ki the number of the quantization levels of quantizer

Qi, where ki is number of bits per sample and i = 1, 2, 3. Let c1 : I1 → [−1, 1],

c2 : I2 → [−1, 1] and c3 : O → (−1, 1) be corresponding optimal compressor func-

tions. These functions are given similarly as in the case of two quantizers (relations

(11) and (12)):

c1(x) =


−

1−exp
(√

2x
3σ

)
1−exp

(
−

√
2t1
3σ

) , −t1 < x < 0

1−exp
(
−

√
2x

3σ

)
1−exp

(
−

√
2t1
3σ

) , 0 < x < t1

,

c2(x) =


−

1−exp
(√

2(x+t1)
3σ

)
1−exp

(
−

√
2(t2−t1)

3σ

) −t2 < x < −t1,

1−exp
(
−

√
2(x−t1)

3σ

)
1−exp

(
−

√
2(t2−t1)

3σ

) t1 < x < t2,

,

c3(x) =

 −1 + exp
(√

2
3σ (x+ t2)

)
, −∞ < x < −t2

1− exp
(
−

√
2

3σ (x− t2)
)
, t2 < x < +∞

.

The total signal distortion D is given by D = D1 +D2 +D3 where Di is distortion

for the inner or outer regions, respectively. The average number of bits per sample

R is given by R = p1 log2N1+p2 log2N2+p3 log2N3, where pi are probabilities that

one signal sample belongs to Ii or O, respectively. After some basic calculations,

similarly to the previous case, we see that D and R can be expressed in the following
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way:

D(N1, N2, N3, t1, t2) =
9σ2

(
1− exp

(
−

√
2t1
3σ

))3
2N2

1

+
9σ2

(
exp

(
−

√
2t1
3σ

)
− exp

(
−

√
2t2
3σ

))3
2N2

2

+
9σ2

(
exp

(
−

√
2t2
3σ

))3
2N2

3

, (19)

R(N1, N2, N3, t1, t2) =

(
1− exp

(
−
√
2t1
σ

))
(log2N1 + 1)

+

(
exp

(
−
√
2t1
σ

)
− exp

(
−
√
2t2
σ

))
(log2N2 + 2)

+ exp

(
−
√
2t2
σ

)
(log2N3 + 2) . (20)

Extra one and two bits, respectively, are added in the rates of every used quan-

tizers in the expression (20). They determine which quantizer is used in the coding

process. This is the side information necessary for decoding. If the source sample

belongs to region I1, the first bit of the codeword is set to zero and the following

bit rate R1 = log2N1 + 1 is used. Otherwise, if source sample belongs to second

or third segment, the first two bits of codeword are set to 10 or 11, respectively.

Since other log2N2 and log2N3 are used for information, corresponding bit rates

are R2 = log2N1 +2 and R3 = log2N1 +2. Such coding enables the simple decoder

structure. Since the coder depends on two parameters t1 and t2, we perform an

optimization for the fixed value of average bit rate. In other words, we solve the
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following optimization problem:

min D

s.t. R = R0

0 ≤ t1 ≤ t2

The optimization procedure can be described as follows. First we express t2 from

(20), considering that R = R0, and then replace it in (19). Hence we obtain the

distortion D only as a function of t1, i.e. D(t1). Then it can be minimized using

one of the well-known unconstrained optimization methods (for example, Simplex

method, variant I) [19].

The above given optimization is valid if thresholds follow relationship 0 ≤ t1 ≤ t2

i.e.

exp
(
−
√
2t2/σ

)
≤ exp

(
−
√
2t1/σ

)
≤ 1. (21)

Combining (20) and (21) we can derive the conditions for the cases represented

in Table 1. It can be seen that there exist four cases with three conditions, re-

spectively. Our method of optimization is correct for any of these cases. Following

these conditions in the terms of t1, k1, k2, k3, and R0, we have obtained a solution

which provides a unique minimum value of D, which means that our method of

optimization is correct. In Table 1. td and tu are defined as:

td = − 1√
2
ln

k1 + 1−R0

k1 − k2 − 1
, (22)

tu = − 1√
2
ln

R0 − k1 − 1

k3 − k1 + 1
. (23)

and they denote lower and upper borders of range in which interval threshold t1 can

take its values to satisfy the constraints in optimization model.
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1st condition 2nd condition 3rd condition

1. td ≤ t1 ≤ tu k1 − 1 ≤ k2 ≤ k3 k1 + 1−R0 ≤ 0

2. td ≤ t1 ≤ tu k1 − 1 ≥ k3 ≥ k2 k1 + 1−R0 ≥ 0

3. td ≤ t1 ≤ tu k1 − 1 ≥ k2 ≥ k3 k1 + 1−R0 ≥ 0

4. td ≥ t1 ≥ tu k1 − 1 ≤ k3 ≤ k2 k1 + 1−R0 ≤ 0

Table 1: Four cases with three range conditions in each case as a function of threshold

t1, sample bit rates k1, k2, k3, andR0 for which our method of optimization is correct,

respectively.

3.3 Block diagrams of coder and decoder

Block schemes of our V LC model are shown on Figure 1.

On the transmission side, input signal I first goes through quantizer selector

where it is compared with the threshold values t1 in the case of two (i = 2) and

t1, t2 in the case of three quantizers (i = 3). Quantizer selector sends the signal

to the corresponding companding quantizer (consisting of compressor and uniform

quantizer). Output consists of the quantizer output O and the information about

the selected quantizer (OQ).

On the reception side, both information go to the decoder selector which sends

the quantizer output O into the corresponding decoder (consisting of the uniform

quantizer decoder and expandor), according to the information OQ.
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4 Numerical examples and optimization

The value often used for description of the quality of quantizer is Signal to Quantizer

Noise Ratio (SQNR) defined by:

SQNR = 10 log

(
σ2

D

)
(24)

In this section we use value of SQNR to measure the performance of the quantizers,

instead of the distortion D.

Numerical results corresponding to the first model (two quantizers) are shown

in Figure 2. We plotted the value of SQNR in relation to the average bit rate

R for different values of N1 and N2. Every line is obtained as a parametric curve

(R(t1), SQNR(t1)). Range of parameter t1 is chosen in the way that R(t1) goes from

its minimum to its maximum value. Optimization is performed by varying different

values of k1 and k2 and computing SQNR where R = R0 is fixed.

Figure 3 shows the numerical results corresponding to the second model (three

quantizers). Value of SQNR is plotted in relation to the average bit rate R for

different numbers of representation levels N1, N2 and N3. Optimal dependency is

practically linear with slope value equal to 6, i.e. SQNR increase 6dB per bit.

Comparison of quantization models with one, two, and three regions is given

in Figure 4. The increase in SQNR between methods with one and two regions is

2.8dB, and between methods with one and three regions is 4.2dB approximately, in

favor of our multi-resolution scalar quantizer. We also made a comparison between

our model and coder consisting of the optimal uniform quantizer and Huffmann

lossless coder. We assume that the uniform quantizer Qu(x) is applied in the sup-

port region [−tmax, tmax] where the bound tmax is optimized. From Figure 4 we can

observe that our method outperforms the well-known mentioned methods. Com-
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paration is also made with the combination of optimal companding quantizer and

simple lossless coder [16]. Our model has more complex quntizer, but simpler coder

for two quantizer model reaches gain of 1.3dB. Considering model with three regions

we reach gain of 2.7dB, with slightly more complex realization structure.

5 Application in speech coding

We have tested our coding scheme on the speech coding. The sample signal is taken

from the base which is derived from the TIMIT corpus [22]. The TIMIT corpus

of speech has been designed to provide speech data for the acquisition of acoustic-

phonetic knowledge and for the development and evaluation of automatic speech

recognition systems.

For the purpose of testing, we consider the adaptive variant of our three quantizer

V LC model. The block scheme is given in the Figure 5.

The original V LC model assumes that the input signal is Laplacian source with

variance (power of the signal) equal to σ = 1. In general, speech signal can be

approximated by Laplacian source with variable variance. Hence, we divide the

input signal into the frames and for each frame we estimate the signal variance and

normalize all samples before coding.

Consider the n samples of the input signal x1, x2, . . . , xn and assume that signal

samples are divided in F frames and each frame consist of M samples. Furthermore

denote by xi,j the j-th sample of the i-th frame (i = 0, . . . , F −1 and j = 0, . . . ,M−

1), i.e. xi,j = xiM+j . In the i-th frame signal variance is estimated using σ2
i =

1
M

∑M−1
j=0 x2i,j . The source samples are then normalized and sent to the quantizer.

When received, the signal has to be denormalized. For that purpose, we also need
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to transmit the signal variance σi. It is quantized using log-uniform quantizer with

Ng levels and sent to the beginning of the each frame. Other signal samples are

normalized to x̄i,j = xi,j/σ̃i, where σ̃i is quantized signal variance, and then sent to

the quantizer.

The representation levels and decision thresholds of log-uniform quantizer Qlu(σ)

are defined as:

log(ylu,i) = log(σmin) +
2i− 1

2Ng
log

σmax

σmin
, i = 1, 2, . . . , Ng,

log(tlu,i) = log(σmin) +
i

Ng
log

σmax

σmin
, i = 0, 1, 2, . . . , Ng,

where σmin and σmax are respectively maximum and minimum possible value of the

signal variance. In other words, log-uniform quantizer is the uniform quantizer in

decibels scale. We used the dynamic range of the variance (20 log(σmax/σmin)[dB])

of 40dB and Ng = 32 levels of log-uniform quantizer. In the Figure 6 we show the

SQNR value as the function of σ for adaptive variant of three quantizer V LC model

and different values of Ng.

Value Ng = 1 corresponds to the non-adaptive case, i.e. when input signal goes

directly to quantizer. Note that SQNR value is not attending its maximum at point

σ = 0dB (it is attending at σ∗ = 2.45dB). However, varying σ violates the condition

R = R0, i.e. bit rate R is also changing. Therefore, we have to adapt variance to

initial value σ = 0dB (σ = 1). As it can be seen in the Figure 6, SQNR value is

almost constant for Ng = 32. Hence Ng = 32 is good choice for the number of levels

of variance quantizer.

For the purpose of the experiment, we choose the frame size M = 200 and total

F = 800 frames. We determine the experimental value SQNRex
i for each frame

i = 0, 1, . . . , F−1. In Figure 7 we show the input signal (upper graph) and SQNRex
i
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R k1 k2 k3 t1 t2 SQNR SQNRex

11 9 10 12 0.636 1.677 63.7116 63.7187

10.5 8 9 11 0.419 1.148 60.754 61.1961

10 8 8 10 0.467 1.004 57.0683 57.3965

9.5 7 8 10 0.419 1.148 54.7334 55.1332

9 7 7 10 0.574 1.192 51.9223 52.0192

Table 2: Comparison between theoretical and experimental value of SQNR of opti-

mal three quantizer V LC model, for different values of bitrate R.

values (lower graph). Experiment is done for R = 9 and the corresponding optimal

three quantizer V LC model (parameters are k1 = k2 = 7, k3 = 10, t1 = 0.574 and

t2 = 1.192).

Note that the x scale on lower graph still represents the index of the sample

(not the frame). The average SQNR value of all frames is equal to SQNRex =

1
F

∑F−1
i=0 SQNRex

i . In our case it follows that SQNRex = 52.0192 and theoretical

value is SQNR = 51.9223 (from Figure 3 and Figure 4). Hence, we obtain good

agreement between theory and experiment in this case. We compared theoretical

and experimental values of SQNR for the several different values of the bitrate

R. As it can be seen from Table 2, there is a good agreement between theory and

experiment in all cases.

6 Conclusion

This paper provides the simple structure coder for memoryless Laplacian source.

We have used companding model based on the two companding quantizers in the

18



first case, and then the three companding quantizers in the second case, with differ-

ent number of representation levels and different compressor functions. There are

analytical estimates of the distortion, average bit rate and signal to quantization

noise ratio derived. We have also performed the R-D optimization for both two and

three quantizers case. Generally our method gives the very simple realization struc-

ture and performances close to optimal ones and hence it is very useful in practical

applications, such as speech signals, images, etc. That is the main advantage of

our model. We have also made a comparison between our model and coder consist-

ing of the uniform quantizer (with optimal support range) and Huffmann lossless

coder Second comparison has bean made between our model and combination of

optimal bounded companding quantizer and simple lossless coder. It is shown that

our coder possesses better results, with much simple and efficient realization struc-

ture. Theoretical results are verified by the experiment on the sample speech signal.

The above discussion points to the fact that our method outperforms well-known

mentioned methods.
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Figure 2: SQNR in relation to the average bit rate R for different numbers of

quantization points in each of two quantizers.
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Figure 3: SQNR in relation to the average bit rate R for different numbers of

quantization points in each of three quantizers.
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σ (in decibels) for non-adaptive (Ng = 1) and adaptive (Ng = 8, 32) three quantizer

V LC model. Parameters of V LC model are equal to k1 = k2 = 7, k3 = 10,

t1 = 0.574 and t2 = 1.192.
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graph) for the optimal three quantizer V LC model with R = 9.
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