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Abstract. We consider the (4+D)-dimensional Kaluza-Klein cosmological
model with two scaling factors filled with an exotic fluid. One of the scaling
factors corresponds to the D-dimensional internal space, and the the second one
to the 4-dimensional universe. In standard quantum cosmology, i.e., over the field
of real numbers R, it leads to dynamical compactification of additional dimen-
sions and to the accelerating evolution of 4-dimensional universe. We construct
a corresponding p-adic quantum model and explore the existence of its p-adic
ground state. In addition, we explore the evolution of this model and the possi-
bility for its adelic generalization, which is necessary for further investigation of
space-time discreteness at very short distances, i.e., in a very early universe. A
special attention is paid to the (4 + 1)- dimensional “empty” model. The corre-
sponding propagators on real (commutative), p-adic and noncommutative (real)
spaces are calculated. Forms of these propagators are compared and discussed.

Keywords: Kaluza-Klein quantum cosmology, noncommutativity, p-adic num-
bers

1. Introduction

Many considerations in quantum gravity (e.g., [1]) suggest that theoretical uncertainty
of measuring distances is greater or equal to the Planck distance. It could be concluded
that at very short distances the Archimedean axiom is not valid, i.e., the space can posses
ultrametric features. Because geometry is always connected with a concrete number field
[2], in the case of nonarchimedean geometry it is used to be the field of p-adic numbers
Qp. In high energy physics, these numbers have been used for almost twenty years. The
motivation comes from string theory [3]. Generally , the p-adic approach should be useful
in describing a very early phase of the universe and processes around the Planck scale.
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A significant number of papers motivated by [3] have been published up to now (for a
review see [4, 5]). In this short review we are especially interested in applications of p-adic
numbers and analysis in quantum cosmology [6]. p-Adic quantum mechanics [7] (QM)
has been successfully applied in minisuperspace quantum cosmology [8]. We have treated
many cosmological models, mainly constructed in four space-time dimensions [6]. Based
on that, one can ask: is it possible to extend this approach to multidimensional quantum
cosmological models? The first part of this paper is devoted to the formulation of such
a model, with two scaling factors and an exotic fluid. We use these models to consider a
possible p-adic structure of extra dimensions. In addition, we explore this possibility to
formulate a consistent real, p-adic and adelic (4+D)-dimensional Kaluza-Klein model.

It should be noted that the structure of space-time around the Planck scale is a very
interesting problem. One very attractive approach is based on noncommutative (NC) ge-
ometry. Besides noncommutative quantum mechanics [9] (mainly used to formulate some
interesting toy models) and a lot of papers related to the NC Quantum Field Theory [10]
and NC Standard Model [11], there have been a few attempts to formulate NC Quantum
Cosmology [12]. In the second part of this paper we formulate and compare the (4+D)-
dimensional model, in particular the (4 + 1)-dimensional, Kaluza-Klein “empty” model
on real (and p-adic) commutative space with its noncommutative version. First of all, we
consider and calculate their corresponding quantum propagators, i.e., examine the evalu-
ation of the same models constructed on different spaces as possible candidates for true
geometrical background at a very early phase of the universe.

After a brief mathematical introduction in Section 2, a short review of p-adic and
adelic quantum mechanics and cosmology is given in Section 3. Section 4 is devoted to
the classical (4+D)-dimensional cosmological models filled with an “exotic” fluid [13]. A
corresponding p-adic model is considered in Section 5. In Section 6 we consider a particu-
lar (4+1) cosmological model with spacetime metric of Friedman-Robertson-Walker type.
We calculate and consider a quantum propagator in the case of real commutative space
(Subsection 6.1), p-adic commutative space (Subsection 6.2) and (real) noncommutative
space (in principle it can be generalized for p-adic case). Similarities and differences in
forms of the propagators are briefly examined. This paper is ended by short conclusion,
including adelic generalization and suggestions for advanced research.

2. p-Adic Numbers and Adeles

Perhaps the most easier way to understand p-adic numbers is if one starts with the notion
of norm. It is well known that any norm must satisfy three conditions: non-negativity,
homogeneity, and triangle inequality. The completion of the field of rational numbers Q
with respect to the absolute value, or standard norm |.|∞, gives the field of real numbers
R ≡ Q∞. Besides this norm, there are others that satisfy the first two conditions and the
third one in a stronger way

‖x + y‖ ≤ max(‖x‖, ‖y‖), (1)

the so called strong triangle inequality. The most important of them is p-adic norm |.|p [4].
The feature (1), also called ultrametricity, is one of the most important characteristics of
the p-adic norm (p denotes a prime number). The number fields obtained by completion
of Q with respect to this norm are called p-adic number fields Qp. It is known that any



Notes on ultrametric extra dimensions and noncommutative quantum cosmology 175

nonzero rational number x can be expressed as x = ±pγa/b, where γ is a rational number,
and a and b are natural numbers which are not divisible with the prime number p and have
no common divisor. Then, p-adic norm of x is, by definition, |x|p = p−γ .

Because Qp is a local compact commutative group, the Haar measure can be intro-
duced, which enables integration. For advanced discussion on this and related topics see,
for example, [14]. In particular, the Gauss integral will be employed

∫

Qp

χp(αx2 + βx)dx = λp(α)|2α|−1/2
p χp

(
−β2

4α

)
, α 6= 0, (2)

where χp = exp 2πi{x}p (a real counterpart χ∞(x) = exp(−2πix)) is an additive
character ({x}p is the fractional part of x), and λp(α) is an arithmetic complex-valued
function [4]. It should be noted that there is a real counterpart to λp

λ∞(α) =
1√
2
(1− i sgnα), α ∈ Q∞. (3)

Commonly, the main properties of λv , (v denotes ∞ or any p) are:

λv(0) = 1, λv(a2α) = λv(α), (4)

λv(α)λv(β) = λv(α + β)λv(α−1 + β−1), |λv(α)|∞ = 1. (5)

A very simple but rather important function in p-adic analysis and p-adic QM is

Ω(|x|p) =
{

1, |x|p ≤ 1,
0, |x|p > 1,

(6)

which is the characteristic function of Zp. Note that Zp = {x ∈ Qp : |x|p ≤ 1} is the
ring of p-adic integers.

Simultaneous treatment of real and p-adic numbers can be realized by via the concept
of adeles. An adele a ∈ A is an infinite sequence a = (a∞, a2, · · · , ap, · · · ), where
a∞ ∈ R and ap ∈ Qp, with the restriction that ap ∈ Zp for all but a finite set S of primes
p. The set of all adeles A can be written in the form

A = U
S
A(S), A(S) = R×

∏

p∈S

Qp ×
∏

p 6∈S

Zp . (7)

Also, A is a topological space. Algebraically, it is a ring with respect to the component-
wise addition and multiplication [15].

3. Quantum Cosmology

Quantum cosmology [16, 17] is the application of quantum theory to the universe as a
whole. However, since gravity is the dominating interaction on cosmic scales, a quantum
theory of gravity is needed as a formal prerequisite for quantum cosmology. Most work
in quantum cosmology is based on the Wheeler-DeWitt equation of quantum geometro-
dynamics. The method is used to restrict the configuration space to a finite number of
variables (scale factor, matter field, etc.) and then to quantize canonically. Since the full
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configuration space of three-geometries is called “superspace”, the ensuing models are
called “minisuperspace models”.

In quantum mechanics and quantum field theory, path integrals provide a convenient
tool for a wide range of applications. In quantum gravity, a path-integral formulation
would have to employ a sum over all four-metrics for a given topology,

Z[g] =
∫
Dgµν(x)eiS[gµν(x)]/~. (8)

In addition, one would expect that a sum over all topologies has to be performed.
Since four-manifolds are not classifiable, this is an impossible task. Attention is therefore
restricted to a given topology (or to a sum over few topologies). Still, the evaluation of an
expression such as this meets great mathematical and conceptual difficulties. While full
(superspace) quantum cosmological models are usually unsolvable, the minisuperspace
ones can be handled with the available mathematical tools.

For minisuperspace models, we use the metric in the standard 3+1 decomposition

ds2 = gµνdxµdxν = −N2dt2 + hijdxidxj , (9)

where N is the lapse function. For these models the functional integral in (8) is reduced
to a functional integral over three-metric and configuration of matter fields, and to an-
other usual integral over the lapse function N . For the boundary condition qα(t2) = q′′α,
qα(t1) = q′α in the gauge Ṅ = 0, we have the minisuperspace propagator

〈q′′α; q′α〉 =
∫

dNK(q′′α, N ; q′α, 0), (10)

where

K(q′′α, N ; q′α, 0) =
∫
Dqαχ(−S[qα]), (11)

is an ordinary quantum-mechanical propagator between fixed minisuperspace coordinates
(q′α, q′′α) in a fixed “time” N . Quantity S is the action of the minisuperspace model, i.e.,

S[qα] =

1∫

0

dtN

[
1

2N2
fαβ(q)q̇αq̇β − U(q)

]
, (12)

where fαβ is a minisuperspace metric (ds2
m = fαβdqαdqβ) with an indefinite signature

(−, +,+, . . . ). This metric includes spatial (gravitational) components, as well as also
matter variables for the given model. It should be noted that the necessary condition
for the existence of an adelic quantum model is the existence of the p-adic ground state
Ω(|qα|p) defined by [6]

∫

|qα
′|p≤1

Kp(qα
′′, N ; qα

′, 0)dqα
′ = Ω(|qα

′′|p). (13)



Notes on ultrametric extra dimensions and noncommutative quantum cosmology 177

4. (4+D)-Dimensional Cosmological Models Over the Field of Real Numbers

The old idea that the four dimensional universe in which we exist is just our observa-
tion of physical multidimensional space-time is receiving much attention nowadays. In
such models compactification of extra dimensions plays the key role and, in the some
of them, leads to the period of accelerated expansion of the universe [13, 18, 19]. This
approach is supported and encouraged by recent results of astronomical observations. We
briefly recapitulate some facts of the real multidimensional cosmological models, neces-
sary for p-adic and adelic generalization. The metric of such a Kaluza-Klein model with
D-dimensional internal space can be presented in the form [13, 20]

rmds2 = −Ñ2(t)dt2 + R2(t)
dridri

(1 + kr2

4 )2
+ a2(t)

dρadρa

(1 + k′ρ2)2
, (14)

where Ñ(t) is a lapse function, R(t) and a(t) are the scaling factors of 4-dimensional
universe and internal space, respectively; r2 ≡ riri(i = 1, 2, 3), ρ2 ≡ ρaρa(a = 1, ...D),
and k, k′ = 0,±1. The form of the energy-momentum tensor is

TAB = diag(−ρ, p, p, p, pD, pD, ..., pD), (15)

where indices A and B run over both spacetime coordinates and the internal space dimen-
sions. If we want the matter to be confined to the four-dimensional universe, we set all
pD = 0.

Now, we examine the case for which the pressure along all extra dimensions vanishes
pD = 0 (in the braneworld scenarios the matter is confined to the four-dimensional uni-
verse), so that all components of TAB are set to zero except the spacetime components
[13]. We assume the energy-momentum tensor of spacetime to be an exotic fluid χ with
the equation of state

pχ =
(m

3
− 1

)
ρχ, (16)

(pχ and ρχ are pressure and energy density of the fluid, parameter m has value between
0 and 2).

4.1. Classical model

Dimensionally extended Einstein-Hilbert action (without a cosmological term) is

S =
∫ √−gR̃dtd3RdDρ + Sm = κ

∫
dtL, (17)

where κ is an irrelevant constant and R̃ is the scalar curvature of the metric. So we can
read off the Lagrangian of the model (for flat internal space)

L =
1

2Ñ
RaDṘ2 +

D(D − 1)
12Ñ

R3aD−2ȧ2

+
D

2Ñ
R2aD−1Ṙȧ− 1

2
kÑRaD +

1
6
ÑρχR3aD. (18)
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For closed universe (k = 1), substitution of the equation of state in the continuity equation

ρ̇χR + 3(pχ + ρχ)Ṙ = 0 (19)

leads to energy density of the form

ρχ(R) = ρχ(R0)
(

R0

R

)m

, (20)

where R0 is the value of the scaling factor in arbitrary reference time t0. If we define the
cosmological constant as Λ = ρχ(R), the Lagrangian becomes

L =
1

2Ñ
RaDṘ2 +

D(D − 1)
12Ñ

R3aD−2ȧ2

+
D

2Ñ
R2aD−1Ṙȧ− 1

2
ÑRaD +

1
6
ÑΛR3aD. (21)

Growth of the scaling factor R, according to (20), leads to decrease in the cosmological
constant by the relation

Λ(R) = Λ(R0)
(

R0

R

)m

. (22)

This decaying Λ term may also explain the smallness of the present value of the cos-
mological constant since, as the universe evolves from very small to very large in size,
the large initial value of Λ decays to small values. If we take m = 2, initial con-
dition for cosmological constant and scaling factor Λ(R0)R2

0 = 3, for laps function
Ñ(t) = R3(t)aD(t)N(t), the Lagrangian (21) becomes

L =
1

2N

Ṙ2

R2
+

D(D − 1)
12N

ȧ2

a2
+

D

2N

Ṙȧ

Ra
. (23)

It should be noted that there are no parameters k and Λ in the Lagrangian. This means
that although they are not zero in this model, it is equivalent to a flat universe with zero
cosmological term. In other words, there is no difference between a four dimensional
universe which looks flat and is not filled with fluid and a closed universe filled with an
exotic fluid.

The solutions to corresponding equations of motion are

R(t) = C1eαt, (24)

a(t) = C2eβt, (25)

where the constants C1, C2, α and β depend on initial conditions. A reasonable assump-
tion is that the size of all spatial dimensions is the same at t = 0. It may be assumed that
this size would be the Planck size, i.e., R(0) = a(0) = lP . The above solutions can be
read in terms of the Huble parameter H = Ṙ/R [13]

R(t) = lP eHt, (26)

a(t) = lP e−Ht. (27)
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Depending on the dimensionality of the internal space, we have

R(t) = lP eHt, (28)

a±(t) = lP e
2Ht
D [−1±

√
1− 2

3 (1− 1
D )]−1

, (29)

for D = 1 and

R±(t) = lP e
Dβt
2 [−1±

√
1− 2

3 (1− 1
D )], (30)

a(t) = lP eβt, (31)

for D > 1. The solution corresponding to D = 1 predicts an accelerating (de Sitter)
universe and a contracting internal space with exactly the same rates. If D > 1, analysis
is complicated but the results are similar.

4.2. Quantum Model

Quantum solutions are obtained from the Wheeler-DeWitt equation

HΨ(R, a) = 0, (32)

where H is the Hamiltonian and Ψ is the wave function of the universe. For this model,
the above equation is read in new variables (X = ln R and Y = ln a)

[
(D − 1)

∂2

∂X2
+

6
D

∂2

∂Y 2
− 6

∂

∂X

∂

∂Y

]
Ψ(X, Y ) = 0. (33)

By introducing a new change

x = X
3

D + 3
+ Y

D

D + 3
, y =

X − Y

D + 3
,

the Wheeler-DeWitt equation takes a simple form

(
−3

∂2

∂x2
+

D + 2
D

∂2

∂y2

)
Ψ(x, y) = 0. (34)

Eq.(34) has four possible solutions [13]

Ψ±D(x, y) = A±e±
√

γ
3 x±

√
γD

D+2 y
, (35)

Ψ±D(x, y) = B±e±
√

γ
3 x∓

√
γD

D+2 y
, (36)

where A± and B± are normalization constants. It is possible to impose boundary condi-
tions to get ΨD(R, a) = 0. For further details see [13].
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5. (4+D)-Dimensional Model Over the Field of p-Adic Numbers

Our consideration of the (4+D)-dimensional Kaluza-Klein model over the field Qp will
start from the Lagrangian of the form (23). All quantities in this Lagrangian will be treated
as p-adic ones. Taking again the replacement X = ln R and Y = ln a, it becomes

L =
1

2N
Ẋ2 +

D(D − 1)
12N

Ẏ 2 +
D

2N
ẊẎ . (37)

The corresponding p-adic equations of motion are

Ẍ +
D

2
Ÿ = 0, Ẍ +

D − 1
3

Ÿ = 0. (38)

It is not difficult to see that the above system can be rewritten in the following form

Ẍ = 0, Ÿ = 0. (39)

If we omit from consideration pseudoconstant solutions and concentrate on the analytical
ones, we get X(t) = C1t + C2, Y (t) = C3t + C4. The calculation of the p-adic classical
action gives

S̄p(X ′′, Y ′′, N ;X ′, Y ′, 0)

=
1

2N
(X ′′ −X ′)2 +

D(D − 1)
12N

(Y ′′ − Y ′)2 +
D

2N
(X ′′ −X ′)(Y ′′ − Y ′). (40)

Because this action is quadratic with respect to both variables X and Y , we can write
down the kernel of p-adic operator of evolution [21, 22]

Kp(X ′′, Y ′′, N ;X ′, Y ′, 0)

= λp

[
D(D + 2)

48N2

] ∣∣∣∣
D(D + 2)

12N2

∣∣∣∣
p

χp[−S̄p(X ′′, Y ′′, N ;X ′, Y ′, 0)]. (41)

Let us use again the change

x = X
3

D + 3
+ Y

D

D + 3
, y =

X − Y

D + 3

to separate variables and make further analysis of this model rather simple. In these
variables the classical action and the kernel of evolution operator read

S̄p(x′′, y′′, N ; x′, y′, 0)

=
1

2N

[
1 +

D(D + 5)
6

]
(x′′ − x′)2 − 1

2N
D(D + 3)(y′′ − y′)2, (42)

Kp(x′′, y′′, N ; x′, y′, 0) = λp

[
6 + D(D + 5)

6

]
λp

[
−D(D + 3)

12N

]

×
∣∣∣∣
D(D + 3)

2N2

[
1 +

D(D + 5)
6

]∣∣∣∣
1/2

p

χp[−S̄p(x′′, y′′, N ; x′, y′, 0)]. (43)
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Now, we can examine the case in which the p-adic wave function has the form corre-
sponding to the simplest ground state [23] (here in two dimensions (6))

Ψp(x, y) = Ω(|x|p)Ω(|y|p). (44)

Putting the kernel of the operator of evolution (43) in Eq.(13) we get that the required
state exists if both conditions

|N |p ≤
∣∣∣∣1 +

D(D + 5)
6

∣∣∣∣
p

, |N |p ≤ |D(D + 3)|p, p 6= 2, (45)

are fulfilled. The answer to the question of whether these conditions can be useful in
determination of dimensionality of the internal space needs further careful analysis.

Going back to the “old variables”, the p-adic ground state wave function for our model
is

Ψp(x, y) = Ω

[∣∣∣∣
(

1− D

D + 3

)
X +

D

D + 3
Y

∣∣∣∣
p

]
Ω

(∣∣∣∣
X − Y

D − 3

∣∣∣∣
p

)
. (46)

We can also write down the solutions in the variables R and a [24].

6. Kaluza-Klein (4+1) - Dimensional “Empty” Model

We start with the metric considered in [20, 25, 26] in which spacetime is of the Friedman-
Robertson-Walker type, having a compactified space which is assumed to be the circle
S1. We adopt the chart {t, ri, ρ} with t, ri and ρ denoting the time, the space coordinates
and the compactified space coordinate, respectively

ds2 = −N2dt2 + R2(t)
dridri

(1 + κr2

4 )2
+ a2dρ2, (47)

where κ = 0,±1, N is the lapse function, and R(t), a(t) are the scale factors of the
universe and compact dimension, respectively. The integrations of the Einstein-Hilbert
action for such an empty (4+1)-dimensional Kaluza-Klein universe with the cosmological
constant Λ

S =
∫ √−g(R̃− Λ)dtd3rdρ (48)

(R̃ is a curvature scalar corresponding to metric (47)) over spatial dimensions gives an
effective Lagrangian in the minisuperspace (R, a)

L =
1

2N
RaṘ2 +

1
2N

R2Ṙȧ− 1
2
NκRa +

1
6
NΛR3a. (49)

6.1. Commutative model over real space

By defining ω2 = − 2Λ
3 (Λ < 0) and changing variables as

u =
1√
8

(
R2 + Ra− 3κ

Λ

)
, v =

1√
8

(
R2 −Ra− 3κ

Λ

)
(50)
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in the “new” minisuperspace (u, v), the Lagrangian takes on the form

L =
1

2N
(u̇2 −N2ω2u2)− 1

2N
(v̇2 −N2ω2v2), (51)

which describes an isotropic oscillator-ghost-oscillator system. Corresponding equations
of motion

ü + N2ω2u = 0, v̈ + N2ω2v = 0 (52)

have the following solutions

u(t) = A cosNωt + B sin Nωt, v(t) = C cosNωt + D sin Nωt (53)

The corresponding classical action S and quantum propagator K (up to sign) have
forms

S̄(u′′, v′′, N ; u′, v′, 0)

=
1
2
ω

[
(u′′2 + u′2 − v′′2 − v′2) cot Nω + (v′v′′ − u′u′′)

2
sin Nω

]
, (54)

K(u′′, v′′, N ; u′, v′, 0) =
ω

sin Nω
e2πiS̄(u′′,v′′,N ;u′,v′,0). (55)

To obtain the energy eigenstates and eigenvectors, we need to recast the propagator
(55) in a form that permits a direct comparison with a spectral representation for the
Feynman propagator given by

K(u′′, v′′, N ;u′, v′, 0)

= Θ(N)
∑

l

Φ(m1,m2)
l (u′′, v′′)Φ∗(m1,m2)

l (u′, v′)e−2ψiNEn,m . (56)

A corresponding Wheeler-Dewitt equation for this model in the minisuperspace (u, v)
is (N = 1) (

∂2

∂u2
− ∂2

∂v2
− ω2u2 + ω2v2

)
Ψ(u, v) = 0. (57)

It has oscillator-ghost-oscillator solutions belonging to the Hilbert space H(m1,m2)(L2)
as

Ψ(m1,m2)(u, v) =
∞∑

l=0

clΦ
(m1,m2)
l (u, v), (58)

with m1,m2 ≥ 0 and cl ∈ C. The solutions Φ(m1,m2)
l (u, v) are separable as

Φ(m1,m2)
l (u, v) = αm2+(2m2+1)l(u)βm1+(2m1+1)l(v) (59)

with normalized solutions

αn(u) =
(ω

π

)1/4 e−ωu2/2

√
2nn!

Hn(
√

ωu), (60)
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βn(v) =
(ω

π

)1/4 e−ωv2/2

√
2nn!

Hn(
√

ωv), (61)

where Hn(x) are Hermit polynomials.

6.2. Commutative model over p-adic space

The main relations connected with the (4+1)-dimensional model in the p-adic case are
formally the same as in the real case. Let us rewrite the p-adically valued metric and
action for this model

ds2 = −N2dt2 + R2(t)
dridri

(1 + κr2

4 )2
+ a2dρ2, (62)

S =
∫ √−g(R̃− Λ)dtd3rdρ. (63)

The effective p-adic Lagrangian in the minisuperspace (R, a) is

L =
1

2N
RaṘ2 +

1
2N

R2Ṙȧ− 1
2
NκRa +

1
6
NΛR3a. (64)

By defining ω2 = − 2Λ
3 (Λ < 0) and changing variables as

u =
1√
8

(
R2 + Ra− 3κ

Λ

)
, v =

1√
8

(
R2 −Ra− 3κ

Λ

)
, (65)

in the “new” minisuperspace (u, v), the Lagrangian takes the form

L =
1

2N
(u̇2 −N2ω2u2)− 1

2N
(v̇2 −N2ω2v2). (66)

For the corresponding equations of motion

ü + N2ω2u = 0, v̈ + N2ω2v = 0 (67)

their solutions are written down as

u(t) = A cosNωt + B sin Nωt, v(t) = C cosNωt + D sin Nωt. (68)

The p-adic classical action is

S̄p(u′′, v′′, N ;u′, v′, 0)

=
1
2
ω

[
(u′′2 + u′2 − v′′2 − v′2) cot Nω + (v′v′′ − u′u′′)

2
sin Nω

]
. (69)

Being quadratic with respect to u and v, this action leads directly [22] to the propaga-
tor

Kp(v′′, u′′, N ; v′, u′, 0)

=
1

|N |p χp

[
ω(u′′2 + u′2 − v′2 − v′′2)

2 tan Nω
+

ω(v′v′′ − u′u′′)
sin Nω

]
. (70)
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In the p-adic region of convergence of analytic functions sin x and tan x, which is Gp =
{x ∈ Qp : |x|p ≤ |2p|p}|, we find that the simplest vacuum states Ω(|u|p)Ω(|v|p),
Ω(pν |u|p)Ω(pµ|v|p), ν, µ = 1, 2, 3, ..., exist, as well as

Ψp(x, y) =

{
δ(pν − |x|p)δ(pµ − |y|p), |N |p ≤ p2ν−2, |N |p ≤ p2µ−2

δ(2ν − |x|2)δ(2µ − |y|2), |N |2 ≤ 22ν−3, |N |2 ≤ 22µ−3,
(71)

where µ, ν = 0,−1,−2, · · · .
Some 4(= 3 + 1)-dimensional quantum cosmological models which in the p-adic

sector look like two decoupled harmonic oscillators were analyzed in detail in Ref. [6].

6.3. Noncommutative case

The study of various physical theories from the noncommutative point of view has been of
particular interest. Besides noncommutativity applied to models defined on real numbers,
there have been a few attempts to introduce a noncommutative approach to p-adic [27, 28,
29] and adelic models. In the previous section we assumed that in (u, v) minisuperspace
the following algebra holds

[u, v] = 0, [u, pu] = [v, pv] = i~, [pu, pv] = 0, (72)

(generalised momenta are pu = u̇/N and pv = v̇/N ). In the noncommutative case we
deal with the same Lagrangian, but with a new algebra

[u, v] = iθ, [u, pu] = [v, pv] = i~, [pu, pv] = 0. (73)

By transformation

u = u− θ

2
pv, v = v +

θ

2
pu, (74)

we can represent this model as a commuting one, but with the Lagrangian

Lθ =
ω2

ω2
θ

[
1

2N

(
u̇2 −N2ω2

θu2
)− 1

2N

(
v̇2 −N2ω2

θv2
)

+
1

2N
ω2

θθ(uv̇ + u̇v)
]

, (75)

where

ω2
θ =

ω2

1 + ω2θ2

4

.

The equations of motion and solutions are

ü + N2ω2
θu = 0, v̈ + N2ω2

θv = 0, (76)

u(t) = A cosNωθt + B sin Nωθt, v(t) = C cosNωθt + D sin Nωθt. (77)

After some calculation, from the classical action

S̄θ(u′′, v′′,N ; u′, v′, 0) =
1
2
ω

√
1 +

ω2θ2

4

×
[
u′′2 + u′2 − v′′2 − v′2) cot Nωθ (78)

−(u′u′′ − v′v′′)
2

sin Nωθ
+

θωθ

N
(u′′v′′ − u′v′)

]
,
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we get ∣∣∣∣∣∣
− ∂2S̄

∂u′∂u′′ − ∂2S̄
∂u′∂v′′

− ∂2S̄
∂v′∂u′′ − ∂2S̄

∂v′∂v′′

∣∣∣∣∣∣

1/2

=

√
1 +

ω2θ2

4
ω

| sin Nωθ| , (79)

and finally the quantum propagator

Kθ(u′′, v′′, N ; u′, v′, 0)

=

√
1 +

ω2θ2

4

√
ω2

sin2 Nωθ

e2πiS̄θ(u′′,v′′,N ;u′,v′,0). (80)

Let us note and remain that in the commutative regime (obtained from the above form
putting θ = 0) we have again (compare (55))

K(u′′, v′′, N ; u′, v′, 0) =
ω

sinNω
χ∞

[−S̄(u′′, v′′, N ;u′, v′, 0)
]
. (81)

A p-Adic generalization is thus possible, and corresponding forms will be presented
elsewhere. For noncommutative path integrals see [30] and references therein.

7. Conclusion

In this paper, we demonstrated how a p-adic version of the quantum (4+D)-Kaluza-Klein
model with an exotic fluid can be constructed. It is an exactly soluble model. From equa-
tions (35), (36) and (44), i.e., (46), it is possible to construct an adelic model too, i.e., a
model which unifies standard and all p-adic models [12]. The investigation of its possible
physical implication and discreteness of space-time deserves much more attention and
space.

Let us note that adelic states for the (4+D)-dimensional Kaluza-Klein cosmological
model (for any D which satisfies (45)) exist in the form

ΨS(x, y) = Ψ±D,∞(x∞, y∞)
∏

p∈S

Ψp(xp, yp)
∏

p/∈S

Ω(|xp|p)Ω(|yp|p), (82)

where Ψ±D,∞(x∞, y∞) are the corresponding real counterparts of the wave functions of
the universe and S is a finite set of primes p. In the ground state wave functions Ψp(xp, yp)
are proportional to Ω(pν |xp|p) Ω(pµ|yp|p) or to δ(pν − |xp|)δ(pµ − |yp|). Adopting the
usual probability interpretation of the wave function (82), we have

|ΨS(x, y)|2∞ =
∣∣∣Ψ±D,∞(x∞, y∞)

∣∣∣
2

∞

∏

p∈S

|Ψp(xp, yp)|2∞
∏

p6∈S

Ω(|xp|p)Ω(|yp|p), (83)

because (Ω(|x|p))2 = Ω(|x|p).
As a consequence of Ω-function properties, at the rational points x, y and in the (spe-

cial) vacuum state (S = ∅, i.e., all Ψp(xp, yp) = Ω(|xp|p)Ω(|yp|p), we find

|Ψ(x, y)|2∞ =

{ ∣∣∣Ψ±D,∞(x, y)
∣∣∣
∞

, x, y ∈ Z,

0, x, y ∈ Q\Z.
(84)
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This result leads to some discretization of minisuperspace coordinates x, y. Namely, the
probability to observe the universe corresponding to our minisuperspace model is nonzero
only in the integer points of x and y. Keeping in mind that Ω-function is invariant with
respect to the Fourier transform, this conclusion is also valid for the momentum space.
Note that this kind of discreteness depends on adelic quantum state of the universe. When
some p-adic states are different from Ω(|x|p)Ω(|y|p) (S 6= ∅), then the above adelic
discreteness becomes less transparent.

Performing the integration in (83) over all p-adic spaces, and having in mind that
eigenfunctions should be normed to unity, one recovers the standard effective model over
real space. However, if the region of integration is over only some parts of p-adic spaces,
then the adelic approach manifestly exhibits p-adic quantum effects. Since the Planck
length is here the natural one, the adelic minisuperspace models refer to the Planck scale.

Further investigation could include determination of conditions for the existence of
ground states in the form Ω(pν |x|p)Ω(pµ|y|p) and p-adic delta function. We should em-
phasize that investigation of dimensionality D of internal space from the conditions (45)
and pseudoconstant solutions of Eq.(39) deserves attention. It could additionally con-
tribute to better understanding of the model, especially from its p-adic sector.

In the last section we consider the (4+1)-dimensional Kaluza-Klein “empty“ model
and calculated corresponding quantum propagators and ground states on real and p-adic
spaces in commutative regime. We also calculated the kernel of the operator of evo-
lution for this model on noncommutaive minisuperspace. Transition from noncommu-
tative to commutative case is simple, just putting θ = 0. It would be very interesting
to compute wave functions of the universe for this model in both cases (commutative-
noncommutative) and compare their form. It could shed light on the very interesting
early phase of the universe, when nonarchimedean and noncommutative effects played an
important role.
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