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Abstract

We consider the perturbed stochastic differential equation of the Ito
type depending on a small parameter. We give conditions of the closeness
in the (2m)–th mean between the solution of this perturbed equation and
the solution of the corresponding unperturbed equation of the equal type.

AMS Mathematics Subject Classification (1991): 60H10
Key words: stochastic differential equation, parametric perturbations,
closeness in the (2m)–th mean.

1 Introduction

Stochastic differential equations depending on deterministic and random pertur-
bations have been extensively investigated both theoretically and experimentally
over a long period of time. Mathematical models in mechanics and engineering
(see [4, 13], for example) and recently in financial mathematics (see [13, 14],
for example) are represented by these equations. The researcher’s interest is
focused on exploring the bifurcational behavior and on conditions of stability or
instability of the solutions of these equations under deterministic and, specially,
stochastic excitations of a Gaussiam white noise type. Having in view that
a Gaussian white noise is an abstraction and not a physical process, at least
mathematically described as a formal derivative of a Brownian motion process,
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all such problems are essentially based on stochastic differential equations of the
Itô type [6] in the form

dxt = a(t, xt) dt + b(t, xt) dwt, t ∈ [0, T ], x0 = η. (1)

Here w = (wt, t ≥ 0) is an Rk–valued normalized Brownian motion defined
on a complete probability space (Ω,F ,P), with a natural filtration {Ft, t ≥ 0}
of nondecreasing sub σ-algebras of F , the functions a : [0, T ] × Rn → Rn and
b : [0, T ]×Rn → Rn×Rk are assumed to be Borel measurable on their domains,
the initial condition η is a random variable defined on the same probalility space
and independent of w, and x = (xt, t ∈ [0, T ]) is an Rn–valued stochastic
process. The process x is a strong solution of Eq. (1) if it is adapted to
{Ft, t ≥ 0}, ∫ T

0
|a(t, xt)| dt < ∞ a.s.,

∫ T

0
|b(t, xt)|2 dt < ∞ a.s. (under these

conditions Lebesgue and Itô integrals in the integral form of Eq. (1) are well
defined), x0 = η and Eq. (1) holds a.s. for all t ∈ [0, T ].

Remember that the problems treating stochastic perturbed equations of the
Ito type have been studied by several authors in the past years, in papers and
books [4, 5, 8 – 16], for example.

Furthermore, we should mention that we shall restrict ourselves to scalar–
valued processes for notational simplicity in this paper. The extension to mul-
tidimensional case is analogous and is not difficult in itself.

On the basis of classical theory of stochastic differential equations of the Itô
type (see [1, 3, 5, 7, 12], for example) one can prove that if the functions a(t, x)
and b(t, x) satisfy the global Lipschitz condition and the usual linear growth
condition on the last argument, i.e. if there exists a constant L > 0 such that

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ L|x− y|, (2)
|a(t, x)|2 + |b(t, x)|2 ≤ L

(
1 + |x|2) , (3)

for all x, y ∈ R, t ∈ [0, T ], and if E|η|2m < ∞ for any fixed natural number m,
then there exists a unique a.s. continuous strong solution x = (xt, t ∈ [0, T ]) of
Eq. (1) satisfying E{supt∈[0,T ] |xt|2m} < ∞. Moreover,

E|xt|2m ≤ (1 + E|η|2m) ec1t − 1, t ∈ [0, T ], (4)

where c1 > 0 is a constant independent on T (see ([12]), for example).
In the present paper we consider the stohastic differential equation of the

Itô type with perturbations depending on a small parameter by comparing it
in the (2m)-th moment sense with an appropriate unperturbed equation of the
equal type. We give a new form of perturbations, partially motivated by the
ones from paper [15], and also from [8, 9].

The paper is organized as follows: In the next section we define the problem
and we give an auxiliary result, important for the future investigation. In fact,
we give the global estimation for the (2m)–th moment closeness of the solutions
of the perturbed and unperturbed equation. After that we give our main results,
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the conditions under which these solutions are close in the (2m)-th moment
sense on finite time–intervals or on intervals whose length tends to infinity as
the small parameter tends to zero. We also give some remarks and we point out
the possible applications of the preceding considerations.

2 Formulation of the problem and main results

Together with (1) in integral form,

xt = η +
∫ t

0

a(s, xs) ds +
∫ t

0

b(s, xs) dws, t ∈ [0, T ], (5)

we consider the following equation

xε
t = ηε +

∫ t

0

[
α1(s, xε

s, ε) a(s, xε
s) + α2(s, xε

s, ε)
]
ds (6)

+
∫ t

0

[
β1(s, xε

s, ε) b(s, xε
s) + β2(s, xε

s, ε)
]
dws, t ∈ [0, T ],

in which ε is a small parameter from the interval (0, 1), the initial value ηε

satisfying E|ηε|2m < ∞ is independent on the same Brownian motion w, and
αi : [0, T ] × R → R and βi : [0, T ] × R → R, i = 1, 2 are given functions
depending on ε.

There are various, essentially different conditions for the existence and uniqu-
eness of solutions of the equations (5) and (6). Furthermore, we shall assume
without emphasizing that there exist a.s. continuous solutions of these equa-
tions, satisfying E supt∈[0,T ] |xt|2m < ∞ and E supt∈[0,T ] |xε

t |2m < ∞, and we
shall emphasize only the conditions immediately used in our discussion.

We shall suppose that there exist a non–random value δ0(·), such that

E|ηε − η|2m ≤ δ0(ε), (7)

and continuous functions δi(·) and γi(·), i = 1, 2, defined on [0, T ] and depending
on ε, such that

sup
x∈R

|α1(t, x, ε)− 1| ≤ δ1(t, ε), sup
x∈R

|α2(t, x, ε)| ≤ δ2(t, ε), (8)

sup
x∈R

|β1(t, x, ε2)− 1| ≤ γ1(t, ε), sup
x∈R

|β2(t, x, ε)| ≤ γ2(t, ε).

Obviously, if the values δ0(ε), δi(t, ε), γi(t, ε) are small for small ε, then we could
expect that the solutions xt and xε

t are close in any reasonable sense. In ac-
cordance with [8, 9] and first of all with [15], the functions αi(·) and βi(·) are
called the perturbations, while Eq. (6) is logically called the perturbed equation
with respect to the unperturbed equation (5).
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In fact, the problem of perturbations considered here is a generalization of
the one from paper [15] for α1(·) ≡ 1, β1(·) ≡ 1. If we take α1(t, x, ε) =
1+ν(t, x, ε), then |ν(t, x, ε) a(t, x)| ≤ δ1(t, ε) |a(t, x)|, which need not be bounded
with respect to x ∈ R. Clearly, our problem could be treated as the one from
[15] only if supx∈R |ν(t, x, ε) a(t, x)| ≤ δ3(t, ε) for any continuous function δ3(·),
which is a very strong assumption with respect to the linear growth condition
(3). Obviously, similar reasoning is valid for β1(·).

First, we shall expose an auxiliary result, the global estimation of the (2m)–
th moment closeness for the solutions x and xε. Note that the line of the proof
is partially similar to [15] and [9], but different from [8].

Proposition 1 Let x and xε be the solutions of the equations (5) and (6) re-
spectively, defined on a finite interval [0, T ] and let the conditions (2), (3), (7)
and (8) be satisfied. Then, for every t ∈ [0, T ],

E|xε
t − xt|2m ≤

[(
ν(T )

)1/m exp
{ 1

m

∫ t

0

ξ(s) ds
}

(9)

+
1
m

∫ t

0

θ(s) exp
{ 1

m

∫ t

s

ξ(r) dr
}

ds

]m

,

where

ν(t) = δ0(ε) + c

∫ t

0

[δ1(s, ε) + 3(2m− 1) γ2
1(s, ε)] ec1s ds

ξ(t) = (2m− 1) δ1(t, ε) + 2mδ2(t, ε) + 3(m− 1)(2m− 1) γ2
1(t, ε) (10)

+2mL + 3m(2m− 1)L2

θ(t) = 2mδ2(t, ε) + 3m(2m− 1) γ2
2(t, ε),

c and c1 are some generic positive constants independent on ε and T .

Proof. Let us denote that

zε
t = xε

t − xt, ∆ε
t = E|zε

t |2m,

after that let us subtract the equations (5) and (6) and then apply the Itô’s
differential formula to (zε

t )
2m. Thus,

(zε
t )

2m = (zε
0)

2m + 2mI1(t) + m(2m− 1)I2(t) + 2mI3(t),

where

I1(t) =
∫ t

0

[
α1(s, xε

s, ε) a(s, xε
s) + α2(s, xε

s, ε)
]
(zε

s)
2m−1 ds,

I2(t) =
∫ t

0

[
β1(s, xε

s, ε) b(s, xε
s) + β2(s, xε

s, ε)
]2 (zε

s)
2m−2 ds,

I3(t) =
∫ t

0

[
β1(s, xε

s, ε) b(s, xε
s) + β2(s, xε

s, ε)
]
(zε

s)
2m−1 dws.
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Because EI3(t) = 0 for t ∈ [0, T ], then

∆ε
t = ∆ε

0 + 2mEI1(t) + m(2m− 1)EI2(t), t ∈ [0, T ]. (11)

It remains to estimate the terms EI1(t) and EI2(t). So, by using the as-
sumptions (8) and the Lipschitz condition (2), we find

EI1(t) ≤ E

∫ t

0

|α1(s, xε
s, ε)− 1| · |a(s, xε

s)| · |zε
s |2m−1ds + L

∫ t

0

∆ε
s ds

+E

∫ t

0

|α2(s, xε
s, ε)| · |zε

s |2m−1ds

≤
∫ t

0

δ1(s, ε)E{|a(s, xε
s)| · |zε

s |2m−1}ds + L

∫ t

0

∆ε
s ds

+
∫ t

0

δ2(s, ε)E|zε
s |2m−1ds.

By applying the elementary inequality a1/pb1/q ≤ a/p + b/q, p > 1, 1/p +
1/q = 1, a, b ≥ 0 and Hölder’s inequality on the third term and taking that
p = 2m/(2m− 1) in both of them, we obtain

EI1(t) ≤
∫ t

0

δ1(s, ε)
(

2m− 1
2m

∆ε
s +

1
2m

E|a(s, xε
s)|2m

)
ds + L

∫ t

0

∆ε
s ds

+
∫ t

0

δ2(s, ε) (∆ε
s)

2m−1
2m ds.

From (3) and (4) it follows that

E|a(s, xε
s)|2m ≤ L2mE

(
1 + |xε

s|2
)m

≤ L2m2m−1
(
1 + E|ηε|2m

)
ec1s.

By taking L2m2m−1(1 + E|ηε|2m) ≤ c for any constant c independent on ε and
T , we find

EI1(t) ≤ c

2m

∫ t

0

δ1(s, ε) ec1sds +
∫ t

0

(
2m− 1

2m
δ1(s, ε) + L

)
∆ε

s ds (12)

+
∫ t

0

δ2(s, ε) (∆ε
s)

2m−1
2m ds.

Similarly, in order to estimate EI2(t) we shall employ the procedure used
above and Hölder’s inequality for p = m/(m− 1). Thus we get

EI2(t) ≤ 3E

∫ t

0

|β1(s, xε
s, ε)− 1|2 · |b(s, xε

s)|2 · |zε
s |2m−2ds (13)
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+3L2

∫ t

0

∆ε
s ds + 3E

∫ t

0

|β2(s, xε
s, ε)|2 · |zε

s |2m−2ds

≤ 3c

m

∫ t

0

γ2
1(s, ε) ec1sds + 3

∫ t

0

(
m− 1

m
γ2
1(s, ε) + L2

)
∆ε

s ds

+3
∫ t

0

γ2
2(s, ε) (∆ε

s)
m−1

m ds.

Now, the relation (11) together with (7), (12) and (13) implies that

∆ε
t ≤ δ0(ε) + c

∫ t

0

[
δ1(s, ε) + 3(2m− 1)γ2

1(s, ε)
]
ec1sds

+
∫ t

0

[
(2m− 1)δ1(s, ε) + 3(m− 1)(2m− 1)γ2

1(s, ε) + 2mL

+3m(2m− 1)L2
]
∆ε

s ds + 2m

∫ t

0

δ2(s, ε) (∆ε
s)

2m−1
2m ds

+3m(2m− 1)
∫ t

0

γ2
2(s, ε) (∆ε

s)
m−1

m ds.

Since vr2 ≤ vr1+v for any non-negative number v and 0 < r1 ≤ r2 < 1, by taking
v = ∆ε

s, r1 = (m− 1)/m, r2 = (2m− 1)/2m it follows that
(
∆ε

s

)(2m−1)/2m ≤(
∆ε

s

)(m−1)/m + ∆ε
s. Thus the last inequality becomes

∆ε
t ≤ ν(t) +

∫ t

0

ξ(s)∆ε
s ds +

∫ t

0

θ(s) (∆ε
s)

(m−1)/mds, t ∈ [0, T ], (14)

where the functions ν(t), ξ(t) and θ(t) are defined as in (10).
To estimate ∆ε

t from this integral inequality, we shall apply the following
version of the well–known Gronwall–Bellman’s lemma [2, pp. 39]: Let u(t), a(t)
and b(t) be nonnegative continuous functions in [0, T ] and let c > 0, 0 ≤ γ < 1
be constants. If, for every t ∈ [0, T ],

u(t) ≤ c +
∫ t

0

a(s)u(s) ds +
∫ t

0

b(s)uγ(s) ds,

then

u(t) ≤
(

c1−γ e
(1−γ)

∫ t

0
a(s) ds + (1− γ)

∫ t

0

b(s) e
(1−γ)

∫ t

s
a(r) dr

ds

)1/(1−γ)

.

Since ν(t) is increasing in t ∈ [0, T ], by taking ν(T ) instead of ν(t) in (14)
and also u(t) = ∆ε

t , γ = (m− 1)/m, and then by applying the previously cited
lemma, we immediately obtain the estimation (9), which completes the proof.
2
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Having in view that the size of perturbations is limited in the sense (7) and
(8), then if we require that δ0(·), δi(·), γi(·), i = 1, 2 tend to zero as ε → 0,
we could expect that the solutions x and xε are close in the (2m)–th mean.
Remember that in paper [15] similar problems are considered for special types
of perturbations α2(·), β2(·), specially chosen ηε and for α1(·) ≡ 1, β1(·) ≡ 1.
The next considerations and conclusions are based on the ones from [8, 9].
Because of that, we shall briefly expose the following results.

Theorem 1 Let the conditions of Proposition 1 be satisfied and let δ0(·), δi(·),
γi(·), i = 1, 2 monotonously tend to zero as ε → 0, uniformly in [0, T ]. Then

sup
t∈[0,T ]

E|xε
t − xt|2m → 0 as ε → 0.

Proof. Let us denote that

δi(ε) sup
t∈[0,T ]

δi(t, ε), γi(ε) = sup
t∈[0,T ]

γi(t, ε), i = 1, 2

and
φ(ε) = max{δ0(ε), δi(ε), γ2

i (ε), i = 1, 2}. (15)

Then, from (9) and (10) it follows that

(∆ε
t )

1/m ≤ (φ(ε))1/m

[
1 + c(6m− 2)

ec1t − 1
c1

]1/m

· ec2t (16)

+φ(ε) (6m− 1)
ec2t − 1

c2
,

where c2 = [4m − 1 + 2L + 2(2m − 1)L2 + 3(m − 1)(2m − 1)ρ]/m and ρ is a
constant for which φ(ε) ≤ ρ for ε ∈ (0, 1). In view of the fact that T is finite
and φ(ε) → 0 as ε → 0, it follows immediately that supt∈[0,T ] ∆ε

t → 0 as ε → 0.
2

If we assume that there exist the unique solutions x and xε of the equations
(5) and (6) respectively, defined on [0,∞), then the previous assertion is gene-
rally not valid. Our intention is to construct finite time–intervals which depend
on ε and whose length goes to infinity as ε goes to zero, such that the solutions
xε

t and xt are close in the (2m)-th moment sense on these intervals.

Theorem 2 Let the conditions of Theorem 1 be satisfied for t ∈ [0,∞) and
the functions δi(·), γi(·), i = 1, 2 be bounded on [0,∞). Then, for an arbitrary
number r ∈ (0, 1) and ε sufficiently small, there exists a number T (ε) > 0,
determined by

T (ε) = − r

c1 + mc2
ln φ(ε), (17)
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where φ(ε) is given by (15), and c1, c2 are some generic positive constants, such
that

sup
t∈[0,T (ε)]

E|xε
t − xt|2m → 0 as ε → 0.

Proof. The main idea in this proof is to take T = T (ε) and define T (ε) from
(16) such that supt∈[0,T (ε)](∆ε

t )
1/m → 0 as ε → 0.

First, let us remember that since φ(ε) → 0 as ε → 0, then there exists
ε ∈ (0, 1) such that φ(ε) < 1 for ε < ε. Because [0, T (ε)] is a finite time–
interval, we can apply Theorem 1 to estimate the closeness of the solutions x
and xε on this interval. By using the elementary inequality |a + b|ν ≤ (2ν−1 ∨
1)(|a|ν + |b|ν), ν > 1, it follows that, from (16),

sup
t∈[0,T (ε)]

(∆ε
t )

1/m ≤ (φ(ε))1/m
[
q1 + q2e

c1/m·T (ε)
] · ec2T (ε) + φ(ε)

[
q3 + q4 ec2T (ε)

]
,

where qi, i = 1, 4 are generic positive constants independent on ε and T (ε).
Now, let us determine T (ε) with respect to φ(ε) such that the greatest term
in the right side of the previous inequality tends to zero as ε → 0. Indeed, by
taking

(c1/m + c2)T (ε) = −r/m · ln φ(ε)

for any number r ∈ (0, 1) and ε < ε, we obtain T (ε) in the form (17).
For T (ε) chosen in that way it is easy to conclude that T (ε) →∞ as ε → 0

and

sup
t∈[0,T (ε)]

(∆ε
t )

1/m ≤ q1 (φ(ε))1/m + q2 (φ(ε))(1−r)/m + q3 φ(ε) (18)

+q4 (φ(ε))(c1+c2(m−r))/(c1+mc2) → 0 as ε → 0,

which completes the proof. 2

Example: Let us consider the following perturbed equation

dxε
t =

(
axε

t + ε sin xε
t

)
dt + bxε

t eε/(1+t+|xε
t |)dwt, xε

0 = η + ε, t ≥ 0, (19)

in which a, b are non-random constants and E|η|2m < ∞, by comparing its
solution with the one of the corresponding linear equation

dxt = axt dt + bxt dwt, x0 = η, t ≥ 0. (20)

Since E|xε
0 − x0|2m = ε2m, |ε sin x| < ε,

∣∣eε/(1+t+|x|) − 1
∣∣ ≤ eε − 1, all the

conditions of Theorem 2 are satisfied for φ(ε) = max{ε2m, ε, (eε − 1)2} = ε,
where ε < ε0, (eε0 − 1)2 = ε0, and φ(ε) → 0 as ε → 0. In accordance with (17),

T (ε) = − 2r

c1 + mc2
ln ε,
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where c1 and c2 are easily obtained generic constants and, therefore, it follows
that supt∈[0,T (ε)] E|xε

t − xt|2m → 0 as ε → 0.

Remember also that E|xt|2m = |η|2me[a+(2m−1)/2 b2] t, t ≥ 0 (see [1, 7, 13]),
i.e. the solution xt of the linear equation (20) is exponentially stable if and
only if a + (2m − 1)/2 b2 < 0. Therefore, under this condition the solution xε

t

of the perturbed equation (19) behaves as the solution xt of the corresponding
linear equation, approximately in the (2m)–th moment sense, when the small
parameter ε goes to zero.

Let us give some remarks: The inequality (18) describes an important re-
sult, the size of the closeness between the solutions x and xε for a fixed small
parameter ε on the time–interval [0, T (ε)].

The initial condition and the perturbations αi(·), βi(·), i = 1, 2 could depend
on different small parameters εi, i = 0, 4. Then, all the assertions remain to be
valid if we take ε = max{εi, i = 0, 4}.

The results of this paper could be used to study stability properties in the
(2m)–th mean for the solution of the perturbed equation, by studying stability
properties in the same sense as for the solution of the corresponding unperturbed
equation.

The method exposed here could be appropriately extended to stochastic
integral and integrodifferential equations of the Itô type, as well as stochastic
differential equations including martingales and martingale measures instead of
the Brownian motion process.

References

[1] Arnold L., Stochastic Differential Equations, Theory and Applications.
New York: John Wiley & Sons 1974.

[2] Bainov D., Simeonov P., Integral Inequalities and Applications. Dordrecht,
Netherlands: Kluwer Academic Publishers 1992.

[3] Gihman I.I., Skorohod A.V., Stochastic Differential Equations and Their
Applications. Kiev: Naukova Dumka 1982 (In Russian).

[4] Ibrahim A.R., Parametric Random Vibration. New York: Wiley 1985.

[5] Ikeda N., Watanabe S., Stochastic Differential Equations and Diffusion
Processes. Amsterdam: North Holand 1981.
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