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Abstract.The notion of hereditary phenomena is particularly convenient
for studying such phenomena in continuum mechanics of materials with memo-
ries, as a version of the well-known theory of fading memory spaces. Mathema-
tical models represent deterministic hereditary differential equations researched
in manu papers and monographs. Later, this notion was appropriately used in
an investigation into the effect of the Gaussian white noise, which mathematical
interpretation is represented by stochastic hereditary differential equations of the
Ito type.

In the present paper we consider a general analytic iterative method for
solving stochastic hereditary integrodifferential equation of the Ito type. We
give sufficient conditions under which a sequence of iterations converges with
probability one to the solution of the original equation. The generality of this
method is in the sense that manu well-known iterative methods are its special
cases, the Picard-Lindelof method of successive approximations, for example.
Some other iterative methods, including linearizations of the coefficients of the
original equation, are suggested.

Especially, using a concept of a random bounded integral contractor, basi-
cally introduced by Altman and Kuo, we show that the iterative procedure utilized
to prove the existence and uniqueness of the solution of the stochastic hereditary
integrodifferential equation, is also a special algorithm included in the considered
general iterative procedure.
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1. Introduction

In some sense, the basic idea of the present problem goes back to papers [30, 31]
by R. Zuber, treating one general analytic iterative method for solving the Cauchy
problem for the ordinary differential equation

x′ = f(t, x), x(t0) = x0. (1.1)

The essence is as follows: Suppose that the functions f : Π → R and fn : Π → R
are continuous on a compact Π = {(t, x) : |t − t0| ≤ a, |x − x0| ≤ b} and satisfy
the Lipschitz condition on the last argument with the same constant L. Then, by
the basic existence and uniqueness theorem it follows that there exist the unique
solution x = x(t) of Eq. (1.1) and the ones of the equations

x′n+1 = fn(t, xn+1), xn+1(t0) = x0, (1.2)

all defined on the interval [t0 − a, t0 + a]. Moreover, if

∞∑

n=1

sup
|t−t0|≤a

|f(t, xn(t))− fn(t, xn(t))| < ∞,

in [30] it is proved that there exists a constant h, 0 < h ≤ a, so that the sequence
of the solutions {xn, n ∈ N} converges to the solution x of Eq. (1.1), uniformly
on the interval [t0 − h, t0 + h]. If the choice of the functions fn is good enough, so
that the equations (1.2) can be effectively solvable, then an ε-approximation of the
solution x of the original equation can be effectively found, in the sense that there
exists n = n(ε) so that |x(t)− xn(t)| < ε for t ∈ [t0 − h, t0 + h] .

This iterative method presents a general algorithm for solving ordinary diffe-
rential equations, in papers [30, 31] called the Z-algorithm, because many well-
known, historically and practically important analytic and numerical methods are
its special cases: Picard method of successive approximations, Chaplygin methods of
secants and tangents, Newton-Kantorovich method and some interpolation methods,
as Euler one, for example. Later, this approach was appropriately extended to
analyze some classes of stochastic differential and integrodifferential equations of
the Ito type.

The paper is organized as follows: Since this paper is, in some sense, a summary
of the investigation of the Z-algorithm in stochastic cases, Section 2 and Section 3
are devoted to earlier obtained results. In Section 2 we construct the Z-algorithm
for stochastic differential equation of the Ito type and we give some algorithms rep-
resenting its special cases. Especially, we prove that the well-known existence and
uniqueness theorem, based on the Picard-Lindelöf method of successive approxima-
tions, is a special case of the Z-algorithm. In Section 3 we extend our consideration
to stochastic hereditary integrodifferential equation, based on a past-history space.
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Section 4 is a continuation of Section 3, in which we investigate the problem of
iterations for a stochastic hereditary integrodifferential equation containing the co-
efficients which have a bounded random integral contractor of the Altman and Kuo
type, instead of the usual Lipschitz condition. We show that the iterative procedure
used in the proof of the existence theorem, is a special case of the Z-algorithm. This
fact implies that very complicated and tiring proofs could be substantially shortened,
which is one of the motivation to form the Z-algorithm.

2. The Z-algorithm for solving stochastic differential equa-
tions

Stochastic differential equations of the Ito type [11] play a mayor role in the char-
acterization of many real phenomena in life science and engineering, and recently in
financial mathematics, and arise frequently in mathematical descriptions of physical
phenomena depending on the effect of a Gaussian white noise random forces (see [9],
for example). Bearing in mind that a Gaussian white noise is an abstraction and not
a physical process, mathematically described as a formal derivative of a Brownian
motion process, all such phenomena are essentially based on stochastic differential
equations of the Ito type.

For example, the behavior of any non-linear dynamical oscillator system is math-
ematically described by a random differential equation

ÿ + f(t, ẏ) = g(t, ẏ) ξ(t, ω),

where ξ(t, ω) is a Gaussian stationary wide-band random process of small intensity
and correlation time, with expectation equal to zero, which is treated as a Gaus-
sian white noise excitation in mechanics and engineering practice. Since, formally,
ξ(t, ω) = ẇ(t, ω), where w(t, ω) is a Brownian motion, i.e. a Wiener process, this
equation can be transformed into the following stochastic system

dy(t) = x(t) dt

dx(t) = −f(t, x(t)) + g(t, x(t)) dw(t)
x(0) = y(0) = c.

where we omitted ω for simpler notation. The second equation in this system is a
special case of the stochastic differential equation of the Ito type,

dx(t) = a(t, x(t)) dt + b(t, x(t)) dw(t), t ∈ [0, T ], (2.3)
x(0) = x0.

Here w = (wt, t ≥ 0) is an Rm–valued normalized Brownian motion defined on a
complete probability space (Ω,F ,P), with a natural filtration {Ft, t ≥ 0} of nonde-
creasing sub σ-algebras of F (Ft = σ{ws, s ≤ t}), the functions a : [0, T ]×Rk → Rk
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and b : [0, T ]×Rk → Rk×Rm, i.e. the drift and diffusion coefficients respectively, are
assumed to be Borel measurable on their domains, and the initial condition x0 is an
Rk-valued random variable defined on the same probability space and independent
of w.

The Rk-valued stochastic process x = (x(t), t ∈ [0, T ]) is a strong solution of Eq.
(2.3) if it is adapted to {Ft, t ≥ 0}, ∫ T

0 |a(t, x(t))| dt < ∞ and
∫ T
0 |b(t, x(t))|2 dt < ∞

with probability one (under these conditions the Lebesgue and Ito integrals in the
integral form of Eq. (2.3) are well defined), x(0) = x0 and Eq. (2.3) holds with
probability one for all t ∈ [0, T ].

Note that Eq. (2.3) can be represented in the equivalent integral form,

x(t) = x0 +
∫ t

0
a(s, x(s)) ds +

∫ t

0
b(s, x(s)) dw(s), t ∈ [0, T ],

where the first integral is in the sense of Lebesgue and the second one is the Ito
integral. Remember that a Brownian motion process is nowhere differentiable and its
continuous sample paths are not of bounded variation on any bounded time interval,
so that the Ito integral cannot be interpreted as Riemann-Stieltjes or Lebesgue-
Stieltjes integral for each sample path. Because of that, it has a specific integral
isometry, based on its martingale characteristics.

On the basis of classical theory of stochastic differential equations of the Ito type
(see [3, 8, 10, 18, 26], for example) one can prove that if the functions a(t, x) and
b(t, x) satisfy the global Lipschitz condition and the usual linear growth condition
on the last argument, i.e. if there exists a constant L > 0 so that, for all t ∈ [0, T ],
x, y ∈ Rk,

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ L|x− y|,
|a(t, x)|+ |b(t, x)| ≤ L(1 + |x|),

and if E|x0|2 < ∞, then there exists a unique a.s. continuous strong solution
x = (x(t), t ∈ [0, T ]) of Eq. (2.3) satisfying E{supt∈[0,T ] |x(t)|2} < ∞. The proof is
based on the Picard–Lindelöf method of successive approximations: for n ∈ N ,

xn+1(t) = x0 +
∫ t

0
a(s, xn(s)) ds +

∫ t

0
b(s, xn(s)) dw(s), t ∈ [0, T ]. (2.4)

Bearing in mind that a class of explicitly solvable such equation is, in general,
very small, from theoretical point of view and from various applications, it is im-
portant to find some approximative analytic or numerical solution. One analytic
approximating method will be the object of the present paper.

Following the ideas of paper [30], the analogous Z-algorithm for Eq. (2.3) was
suggested in paper [12]. Let us suppose that an : [0, T ] × Rk → Rk and bn :
[0, T ] × Rk → Rk × Rm, n ∈ N , be deterministic functions satisfying the same
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conditions as the functions a and b from Eq. (2.3), and xn+1 = (xn+1(t), t ∈ [0, T ]),
be the strong solution of the equation

dxn+1(t) = an(t, xn+1(t)) dt + bn(t, xn+1(t)) dw(t), t ∈ [0, T ], (2.5)
xn+1(0) = x0.

It is quite natural to expect that if the pair of functions (an, bn) is close in some
sense to (a, b), then the sequence of processes {xn, n ∈ N} will tend to x as n →∞.
Of course, in addition to the requirement that an(t, x) → a(t, x), bn(t, x) → b(t, x)
as n →∞, uniformly in (t, x) ∈ [0,∞)×Rk, in accordance with paper [30] we shall
also require that

∞∑

n=1

sup
t,x
{|a(t, x)− an(t, x)|+ |b(t, x)− bn(t, x)|} < ∞. (2.6)

The condition (2.6) is used essentially to prove the following assertion:

Theorem 1. Let the functions a, b, an, bn, n ∈ N be defined as above and the con-
dition (2.6) be satisfied. Then the sequence of processes {xn, n ∈ N} converges with
probability one, as n → N , to the solution x of Eq. (2.3).

If we denote that

εn = E{ sup
t∈[0,T ]

[ |a(t, xn(t))− an(t, xn(t))|2 + |b(t, xn(t))− bn(t, xn(t))|2]},

then (2.6) implies that
∑∞

n=1 εn < ∞. Through the proof, we come to the following
iterative formula,

E{|x(t)− xn+1(t)|2} ≤ 2α

∫ t

0
E{|x(t)− xn(t)|2} ds + βεn t

+α

∫ t

0

[
2α

∫ s

0
E{|x(u)− xn(u)|2} du + β εn s

]
eα(t−s) ds,

from which, by induction, the mean square closeness between the solution x and the
iteration xn is determined so that

E{ sup
t∈[0,T ]

|x(t)− xn(t)|2} ≤

[c1 Pn−3(2αT ) + c2 Pn−2(2αT ) + c3εn−1] · eαT − 1
α

,

where Pn(u) = 2αc
un

n!
+ β

n∑

k=0

εk+1
un−k

(n− k)!
, and α, β, c, c1, c2, c3 are some generic

constants.
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Theorem 1 can be proved under some other conditions which, in some sense,
are weaker than the condition (2.6). For example, we can suppose that all the
functions a, b, an, bn are random and require that the Lipschitz condition, the linear
growth condition and (2.6) are satisfied with probability one. Moreover, since the
condition (2.6) is very strict, it could be modified and weakened with the assertion∑∞

n=1 εn < ∞ instead of (2.6). But, in general, it seems more difficult to verify this
fact, because all iterations must be known.

Theorem 1 gives us an idea how to construct a sequence of iterations which
converges with probability one to the solution of Eq. (2.3). So, by following the
proof of Theorem 1, we can find an ε-approximation of the solution x, i.e. the
stochastic process xn for n = n(ε), so that

P{ sup
t∈[0,T ]

|x(t)− xn(t)| < ε} = 1.

At least theoretically, in order to determine an ε-approximation of the solution
x, we shall find a sequence of iterations, i.e. of stochastic processes x1, x2, . . .
in the following way: Let x1 be an arbitrary stochastic process with x1(0) = x0

with probability one and E{supt |x1(t)|2} < ∞. Next, we choose a pair of func-
tions (a1, b1), or more generally, a pair of stochastic processes depending on x1, so
that the Lipschitz and linear growth conditions be satisfied and supt,x{|a(t, x) −
a1(t, x)|+ |b(t, x)− b1(t, x)|} ≤ c1 < ∞. Then, we find a solution x2 of the equation
dx2(t) = a1(t, x2(t)) dt + b1(t, x2(t)) dw(t), x2(0) = x0. By induction, if we know
xn−1(t), we choose a pair of real or random functions (an−1, bn−1), so that they are
Lipschitzian and satisfy the linear growth condition and supt,x{|a(t, x)−an−1(t, x)|+
|b(t, x) − bn−1(t, x)|} ≤ cn−1 < ∞, where cn−1 is an (n − 1)-th term of any conver-
gent series. Now, the process xn can be found as a solution of the equation dxn(t) =
an−1(t, xn(t)) dt + bn−1(t, xn(t)) dw(t), xn(0) = x0. Since

∑∞
n=1 εn ≤

∑∞
n=1 cn < ∞,

Theorem 1 is valid for the choice of the sequence {(an, bn), n ∈ N}.
Analogously to the basic paper [30], it is convenient to use the notion the Z-

algorithm for this iterative procedure, and the sequence of functions {(an, bn), n ∈ N}
will be called the determining sequence for the Z-algorithm.

Of course, the Z-algorithm can be effectively used only if the choice of the deter-
mining sequence is good enough, i.e. if the equations (2.5) can be solvable. The fact
that any linear stochastic differential equation is solvable (see [3, 8, 18, 26]) leads us
to the idea to linearize the functions a and b. Simple forms of such linearization by
following assertions are expressed:

Corollary 1. Let {αn(t), t ∈ [0, T ], n ∈ N} and {βn(t), t ∈ [0, T ], n ∈ N} be a
sequences of uniformly bounded continuous functions. Then the sequence of random
functions {(an, bn), n ∈ N}, defined by

an(t, x) = αn(t) · [x− xn(t)] + a(t, xn(t)),
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bn(t, x) = βn(t) · [x− xn(t)] + b(t, xn(t)),

is a determining sequence of the Z-algorithm for Eq. (2.3).

Indeed, it is clear that the Lipschitz condition is satisfied with probability one.
It is quite more difficult to prove that the linear growth condition is also satisfied
with probability one, which was proved in paper [12]. Since

a(t, xn(t))− an(t, xn(t)) = b(t, xn(t))− bn(t, xn(t)) ≡ 0, n ∈ N,

the condition (2.6) holds and, therefore, {(an, bn), n ∈ N} is the determining se-
quence of the Z-algorithm.

In particular, if αn(t) = βn(t) ≡ 0 for each n ∈ N , the Z-algorithm is reduced
to the usual Picard-Lindelöf method of iterations (2.4), which proves the existence
of the solution x of Eq. (1.1).

The second type of the linearization is based on the Chaplygin method of secants
and tangents for ordinary differential equations. This type of iterations is described
in paper [13] for onedimensional case, by using some comparison theorems instead
of the usual Chaplygin differential inequality theorem for deterministic case. So, we
associate the sequence of the equations

dyn+1(t) = un(t, yn+1(t)) dt + b(t, yn+1(t)) dw(t), t ∈ [0, T ], y0(0) = x0,

dzn+1(t) = vn(t, zn+1(t)) dt + b(t, zn+1(t)) dw(t), t ∈ [0, T ], z0(0) = x0,

to the original equation (1.1), so that the sequences of the functions {un, n ∈ N}
and {vn, n ∈ N} are determining sequences for the Z-algorithm, analogously to the
Chaplygin method of secants and tangents in deterministic case. These notions by
the following assertion are expressed:

Corollary 2. Suppose the following conditions hold:
(i) a(t, x) is two times differentiable in x and satisfies the linear growth condi-

tion, a′x(t, x) is bounded on [0, T ]×R, a′′xx(t, x) does not change its sign on [0, T ]×R;
(ii) b(t, x) satisfies the Lipschitz condition and the linear growth condition.
Then the sequences of random processes {un, n ∈ N} and {vn, n ∈ N}, defined

by

un(t, x) = a′x(t, yn(t)) · [x− yn(t)] + a(t, yn(t)),

vn(t, x) =





a(t, zn(t))− a(t, yn(t))
zn(t)− yn(t)

· [x− yn(t)] + a(t, yn(t)),

zn(t) 6= yn(t) with prob. one,

un(t, x), zn(t) = yn(t) with prob. one,
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are determining sequences of the Z-algorithm for Eq. (2.3). Moreover, yn(t) ≤
x(t) ≤ zn(t) or yn(t) ≤ x(t) ≤ zn(t) with probability one, for all t ∈ [0, T ].

From the proof of this theorem it follows that

E{ sup
t∈[0,T ]

|zn(t)− yn(t)|2} ≤ K
(bT )n−3

(n− 3)!
, n = 3, 4, . . . ,

where K and b are some generic constants. Clearly, the sequence of stochastic
processes {yn, n ∈ N} converges with probability one to the solution x from the left
side, and {zn, n ∈ N} from the right side. But, let us mention that it can not be
proved, as in deterministic case, that sample pats of these sequences are monotonous
with probability one.

Note that the determining sequence {un, n ∈ N}, i.e. the iterative method
of tangents, is analogous to the Newton–Kantorovich method for solving ordinary
differential equations. In this case it is not necessary to require that a′′xx(t, x) is of
the same sigh, and the sample paths of {yn, n ∈ N} can be located on the both sides
of the sample path of the solution x.

3. The Z-algorithm for solving stochastic hereditary
integrodifferential equations

The notion of hereditary phenomena are particularly useful for studying real
phenomena in continuum mechanics of materials with memories, as a version of the
well-known theory of ”fading memory” spaces. Mathematical models in studies of
viscoelasticity, represent, deterministic functional hereditary differential equations,
researched elsewhere in papers [5, 6, 7, 19, 22] and in many others, in which existence,
uniqueness and stability problems of solutions have been investigated for a long
period of time. In particular, Mizel and Trutzer [23, 24] incorporated the effect
of a Gaussian white noise on hereditary phenomena, as a random perturbation of
the deterministic case, so that mathematical models were reproduced by stochastic
hereditary differential and integrodifferential equations of the Ito type. In both of
these papers, the existence, uniqueness and stability problems under Lipschitz and
linear growth conditions for the coefficients of these equations are studied. Likewise,
some applications of theoretical results to appropriate problems from continuum
mechanics were described in these papers.

Let us introduce in short some notions and results, immediately used in our
investigation. For more details see previously cited papers, first of all [23] and [15].

Let Rk be the real k-dimensional Euclidean space and Lρ
p, 1 ≤ p ≤ ∞, be the

usual space of classes of measurable functions, i.e.,

Lρ
p =

{
ϕ | ϕ : R+ → Rk;

∫ ∞

0
|ϕ(t)|pρ(t) dt < ∞

}
,
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where the function ρ : R+ → R+, called an influence function with relaxation prop-
erties, is summable on R+ and for every σ ≥ 0 one has K(σ) = ess sups∈R+

ρ(s+σ)
ρ(s) ≤

K < ∞, K(σ) = ess sups∈R+
ρ(s)

ρ(s+σ) < ∞. From these conditions ρ is essentially
bounded, essentially strictly positive and sρ(s) → 0 as s → 0 (see [5]).

Let X = Rk×Lρ
p be a Banach product space, i.e. a past-history space of elements

x, x = (ϕ(0), ϕ), with the norm

||x||X =
(
|ϕ(0)|p +

∫ ∞

0
|ϕ(t)|pρ(t) dt

)1/p

= (|ϕ(0)|p + ||ϕ||pr )1/p .

In terms of the space X, one can formulate the notion of X-admissibility for
measurable functions defined on any left semiaxis of R.

The measurable function x : (−∞, T ] → Rk, T =const∈ R, is X-admissible
if for each t ∈ (−∞, T ] the function xt, called its history up to t and defined by
xt

r(s) = x(t− s), s ∈ R+, is itself an element in X.
So, if x is X-admissible, then xt = (x(t), xt

r) ∈ X for each t ∈ (−∞, T ], where

x(t) =

{
x(t), 0 ≤ t ≤ a,
ϕ(−t), t < 0,

, xt
r(s) =

{
x(t− s), 0 ≤ s ≤ t,
ϕ(s− t), s > t,

. (3.7)

From the definition of the norm on the space X, for every x ∈ X and 0 ≤ 0 ≤
t ≤ T , it follows that

||xt||2X ≤ K̃

[
|x(t)|2 + K

2/p||xt0 ||2r +
(∫ t

0
|x(u)|pρ(t− u) du

)2/p
]

, (3.8)

where K̃ = 32/p−1 ∨ 1 (see [23]).
The functional differential equation, called the hereditary differential equation ,

ẋ(t) = f(t, xt), x0 = ϕ0, ϕ0 ∈ X,

where f : R × X → Rk is a given functional, is considered in papers [5, 7] and in
many others. Its solution consists of a function x : (−∞, T ] → Rk, T =const> 0,
such that x is X-admissible on (−∞, T ], x(t) is differentiable for each t ∈ (0, T ], the
equation holds for t ∈ [0, T ] and x0 = ϕ. From the structure of xt, the continuity of
x(t) on [0, T ] implies that xt, t ∈ [0, T ], is also continuous with respect to the norm
of the space X.

All preceding notions and definitions are appropriately used in paper [23] to
analyze the following stochastic hereditary integrodifferential equation

dx(t) =
[
a1(t, xt) +

∫ t

0
a2(t, s, xs) ds +

∫ t

0
a3(t, s, xs) dw(s)

]
dt (3.9)

+
[
b1(t, xt) +

∫ t

0
b2(t, s, xs) ds +

∫ t

0
b3(t, s, xs) dw(s)

]
dw(t), t ∈ [0, T ],

x0 = ϕ0,
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for which the existence, uniqueness and stability problems are considered in details.
Here w is an Rm-valued normalized Brownian motion, adapted to the family {Ft, t ≥
0} of nondecreasing sub σ-algebras of F , ϕ0 ∈ X is independent of w, the functionals

a1 : [0, T ]×X → Rk, b1 : [0, T ]×X → Rk ×Rm,
a2 : J ×X → Rk, b2 : J ×X → Rk ×Rm,
a3 : J ×X → Rk ×Rm, b3 : J ×X → Rk ×Rm ×Rm,

where J = {(t, s) ∈ [0, T ]× [0, T ]}, are Borel measurable on their domains.
A stochastic process x = (x(t), t ∈ (−∞, T ]) is a strong solution of Eq. (3.9)

for t ∈ [0, T ], if x(t) is nonanticipating for t ≤ T , xt ∈ X with probability one for
t ∈ [0, T ], all Lebesgue and Ito integrals in integral form of Eq. (3.9) exist and Eq.
(3.9) holds with probability one for each t ∈ [0, T ]. Of course, xt has the form (3.7).

In paper [23] the following existence and uniqueness theorem is given:
Theorem 2. Assume that there exists a constant L > 0 such that the Lipschitz and
linear growth conditions are satisfied for the coefficients of Eq. (3.9), i.e. for all
(t, s) ∈ J and x, y ∈ X,

|a3(t, s, x)− a3(t, s, y)| ≤ L ||x− y||X , (3.10)
|a3(t, s, x)|2 ≤ L2 ( 1 + ||x||2X), (3.11)

and similarly for the other functionals. If E||ϕ0||2X < ∞, then there exists a unique,
with probability one strong solution x = (x(t), t ∈ (−∞, T ]) of Eq. (3.9), satisfying
E{supt∈[0,T ] |x(t)|2} < ∞.

Note that the proof of the existence of the solution is based on Picard–Lindelöf
method of successive approximations:

x0(t) = ϕ(0), t ∈ [0, T ],
xn+1(t) = ϕ(0) (3.12)

+
∫ t

0

[
a1(s, xs

n) +
∫ s

0
a2(s, u, xu

n) du +
∫ s

0
a3(s, u, xu

n) dw(u)
]
ds

+
∫ t

0

[
b1(s, xs

n) +
∫ s

0
b2(s, u, xu

n) du +
∫ s

0
b3(s, u, xu

n) dw(u)
]
dw(s),

t ∈ [0, T ], n = 0, 1, 2, . . . ,

xn+1(t) = ϕ(−t), t ≤ 0, n = 0, 1, 2, . . .

(xt
n+1)r(s) =

{
xn+1(t− s), 0 ≤ s ≤ t ≤ T,
ϕ(s− t), s > t,

n = 0, 1, 2, . . .

It is shown in paper [15] that this iterative method is a special case of a general
iterative procedure, analogous to the Z-algorithm described in Section 2. Similarly,
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we associate to Eq. (3.9) the sequence of stochastic hereditary integrodifferential
equations

dxn+1(t) = (3.13)[
a1n(t, xt

n+1) +
∫ t

0
a2n(t, s, xs

n+1) ds +
∫ t

0
a3n(t, s, xs

n+1) dw(s)
]
dt

+
[
b1n(t, xt

n+1) +
∫ t

0
b2n(t, s, xs

n+1) ds +
∫ t

0
b3n(t, s, xs

n+1) dw(s)
]
dw(t),

t ∈ [0, T ], n ∈ N,

x0
n+1 = ϕ0.

We suppose that all the coefficients of these equations are defined as the ones for Eq.
(3.9) and satisfy the conditions of Theorem 2, which quarantines the existence of
their unique, with probability one continuous strong solutions xn+1 = (xn+1(t), t ∈
(−∞, T ]). Our main purpose is to expose sufficient conditions for the closeness
between the functionals ain, bin, i = 1, 2, 3, with the corresponding functionals ai, bi,
i = 1, 2, 3, so that the sequence of processes {xn, n ∈ N} converges with probability
one to the solution x of Eq. (3.9). In this sense, let us denote that

Fn(t, s, x) = |a1(t, x)− a1n(t, x)|+ |a2(t, s, x)− a2n(t, s, x)|
+ |a3(t, s, x)− a3n(t, s, x)|+ |b1(t, x)− b1n(t, x)|
+ |b2(t, s, x)− b2n(t, s, x)|+ |b3(t, s, x)− b3n(t, s, x)|.

Then, the following assertion, proved in paper [15], is valid:

Theorem 3. Let the functionals ai, bi, ain, bin, i = 1, 2, 3, n ∈ N , and ϕ0 ∈ X
satisfy the conditions of Theorem 2 and let

∞∑

n=1

Fn(t, s, x) < ∞. (3.14)

Then the sequence of solutions {xn, n ∈ N} of the equations (3.13) converges with
probability one as n →∞, to the solution x of the equation (3.9).

The proof is analogous to the one of Theorem 1, but it is more complicated
because of the structure and norm of the space X. Similarly, if we denote that

εn = E{ sup
J

[ |a1(t, xt
n)− a1n(t, xt

n)|2 + |a2(t, s, xs
n)− a2n(t, s, xs

n)|2

+ |a3(t, s, xs
n)− a3n(t, s, xs

n)|2 + |b1(t, xt
n)− b1n(t, xt

n)|2 (3.15)
+ |b2(t, s, xs

n)− b2n(t, s, xs
n)|2 + |b3(t, s, xs

n)− b3n(t, s, xs
n)|2 ]}, n ∈ N,
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then
∑∞

n=1 εn < ∞, which makes it possible to prove that, for all large enough n,

sup
t∈[0,T ]

|x(t)− xn(t)| < ε with probability one.

Therefore, xn(t) → x(t), n →∞ with probability one, uniformly in [0, T ]. Likewise,
following the proof of this assertion, we find that

E{ sup
t∈[0,T ]

|x(t)− xn(t)|2} ≤ Pn−2(2αT ) · eαT − 1
α

, n = 2, 3, . . . ,

where Pn−2(u) = 2αc
un−2

(n− 2)!
+ β

n−1∑

k=1

εk
un−k−1

(n− k − 1)!
, and α, β, c are generic con-

stants.
Since the choice of functionals ain, bin, i = 1, 2, 3 determines the (n + 1)-th ap-

proximation of the solution of Eq. (3.9), the previous iterative method is logically
called the Z-algorithm, while its determining sequence is the sequence of the set of
functionals

{(a1n, a2n, a3n, b1n, b2n, b3n), n ∈ N}. (3.16)

Note that the determining sequence could be stochastic, by the same reason as
the one from Section 2. From theoretical point of view, the choice of the deter-
mining sequence makes to be possible to investigate and, in the best case to solve
effectively Eq. (3.9). Certainly, this requirement is extremely strong for the con-
sidered stochastic hereditary equation and it is almost impossible to form such an
algorithm. This fact suggests us to construct simple forms of linearization of the
coefficients of Eq. (3.9), as it is shown in the next examples.

Corollary 3. Let the functionals ai, bi, i = 1, 2, 3 satisfy the conditions of Theorem
2 and the functionals αin : [0, T ] → Rk, βin : [0, T ] → Rk, i = 1, 2, 3, n ∈ N be
uniformly bounded. Then the sequence of random functions (3.16), defined by

a1n(t, x) = α1n(t) · ||x− xt
n||X + a1(t, xt

n),
ain(t, s, x) = αin(t) · ||x− xt

n||X + ai(t, s, xt
n), i = 2, 3,

b1n(t, x) = β1n(t) · ||x− xt
n||X + b1(t, xt

n),
bin(t, s, x) = βin(t) · ||x− xt

n||X + bi(t, s, xt
n), i = 2, 3,

describes the determining sequence of the Z-algorithm for Eq. (3.9).

Really, the functionals ain, bin, i = 1, 2, 3, n ∈ N satisfy the Lipschitz condition
with the same Lipschitz constant. Since εn = 0 for every n ∈ N , then

∑∞
n=1 εn < ∞.

By following the procedure used in paper [12] and the usual properties of stopping
times, we can conclude that the linear growth condition is also satisfied. Therefore,
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by applying Theorem 3 it follows that this iterative method describes a version of
the Z-algorithm for Eq. (3.9).

In particular, if αin = βin ≡ 0, i = 1, 2, 3, n ∈ N , then this algorithm is reduced
to the Picard–Lindelöf method of successive approximations (3.12).

Corollary 4. Let the functionals ai, bi, i = 1, 2, 3 satisfy the conditions of Theorem
2 and the functionals αin : [0, T ] → R, βin : [0, T ] → R, i = 1, 2, 3, n ∈ N be
uniformly bounded. Then the sequence of random functions (3.16), defined by

a1n(t, x) = α1n(t) · [x− xn(t)] + a1(t, xt
n),

ain(t, s, x) = αin(t) · [x− xn(t)] + ai(t, s, xt
n), i = 2, 3,

b1n(t, x) = β1n(t) · [x− xn(t)] + b1(t, xt
n),

bin(t, s, x) = βin(t) · [x− xn(t)] + bi(t, s, xt
n), i = 2, 3,

describes the determining sequence of the Z-algorithm for Eq. (3.9).

The proof is similar to the one of the preceding assertion. If αin = βin ≡ 0, i =
1, 2, 3, n ∈ N , we also obtain the Picard–Lindelöf method of successive approxima-
tions (3.12).

4. The Z-algorithm and a contractor theory

In this section the existence and uniqueness of the solution of Eq. (3.9) is con-
sidered by using the concept of a random integral contractor, which includes the
Lipschitz condition as a special case. Our main goal is to show that the iterative
procedure used in the proof of the existence theorem, presents a special case of the
general Z-algorithm. Note that analogous conclusions could be exposed to different
types of stochastic differential equations which coefficients have bounded random
integral contractors, first of all for Eq. (2.3).

As it is well known, the concept of an integral contractor was introduced by
Altman [1, 2] as a useful tool for studying some classes of deterministic equations in
Banach spaces. This approach was appropriately extended by Kuo [21] to analyze
the existence and uniqueness of solutions for stochastic differential equations of the
Ito type. Later, many authors applied the notion of random integral contractors to
various classes of stochastic differential, integral and integrodifferential equations,
[14, 16, 17, 21, 25, 27, 28, 29], for example.

By following the basic ideas of Altman and Kuo, the concept of a bounded
random integral contractor was introduced in paper [16] to prove the existence and
uniqueness of a solution of Eq. (3.9), while in paper [17] some relations between
various conditions for the coefficients of this equations, were investigated. In order
to prove that the Z-algorithm can be incorporated in this contractor theory, we shall
briefly employ some its elements, adapted to Eq. (3.9).
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Furthermore, all definitions and assumptions about the functionals ai, bi, i =
1, 2, 3, and the initial condition, are valid.

Let

Γ1 : [0, T ]×X → Rk ×Rk, Φ1 : [0, T ]×X → Rk ×Rk

Γi : J ×X → Rk ×Rk, Φi : J ×X → Rk ×Rk, i = 2, 3

be measurable mappings, bounded in the sense that there exist positive constants
αi, βi, i = 1, 2, 3, such that for every (t, s, x) ∈ J ×X, y ∈ Rk,

|Γ1(t, x) y| ≤ α1 |y|, |Φ1(t, x) y| ≤ β1 |y| (4.17)
|Γi(t, s, x) y| ≤ αi |y|, |Φi(t, s, x) y| ≤ βi |y|, i = 2, 3.

Let ((Ax)y)t be an element of the space X, i.e., ((Ax)y)t = ((Ax)y)(t), yt
r), where

((Ax)y)(t) = y(t) +
∫ t

0

[
Γ1(s, xs) y(s) (4.18)

+
∫ s

0
Γ2(s, r, xr) y(r) dr +

∫ s

0
Γ3(s, r, xr) y(r) dw(r)

]
ds

+
∫ t

0

[
Φ1(s, xs) y(s) +

∫ s

0
Φ2(s, r, xr) y(r) dr

+
∫ s

0
Φ3(s, r, xr) y(r) dw(r)

]
dw(s),

and yt
r is an element on Lρ

p.
Suppose there exists a positive constant K such that, for any xt, yt, in X and

(t, s) ∈ J , the following inequalities hold with probability one:

|a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt) y(t)| ≤ K || y||t, (4.19)
|ai(t, s, xs + ((Ax)y)s)− ai(t, s, xs)− Γi(t, s, xs) y(s)| ≤ K || y||s, i = 2, 3,

|b1(t, xt + ((Ax)y)t)− b1(t, xt)− Φ1(t, xt) y(t)| ≤ K || y||t,
|bi(t, s, xs + ((Ax)y)s)− bi(t, s, xs)− Φi(t, s, xs) y(s)| ≤ K || y||s, i = 2, 3,

where
||y||t = sup

0≤s≤t
||ys||X .

Then the set of functionals (a1, a2, a3, b1, b2, b3) has a bounded random integral con-
tractor

{
I +

∫ t

0

[
Γ1 +

∫ s

0
Γ2 dr +

∫ s

0
Γ3 dw(r)

]
ds (4.20)

+
∫ t

0

[
Φ1 +

∫ s

0
Φ2 dr

∫ s

0
Φ3 dw(r)

]
dw(s)

}
.
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Bearing in mind dimensions of elements of the bounded random integral con-
tractor (4.20), it is clear that we can investigate only the case m = 1. Therefore,
all the functionals ai, bi, i = 1, 2, 3, are Rk-valued and the Brownian process is one-
dimensional.

A bounded random integral contractor is said to be regular if the linear equation

(Ax)y = z (4.21)

has a solution y in X for any x and z in X.
A functional h : [0, T ]×X → Rk is said to be stochastically closed if for any x and

xn in X, so that xn → x and h(·, x·n) → y in L2([0, T ]× Ω), we have y(t) = h(t, xt)
with probability one, for every t ∈ [0, T ]. The stochastic closeness of a functional
h : J ×X → Rk is defined analogously.

Of course, if the functionals ai, bi, i = 1, 2, 3, satisfy the Lipschitz condition,
then they are stochastically closed and the set of functionals (a1, a2, a3, b1, b2, b3)
has a trivial bounded random integral contractor (4.20) for Γi = Φi = 0, i = 1, 2, 3.
It was also shown in paper [16], that the Lipschitz condition implies the existence
of a class of bounded random integral contractors (4.20) in which Γ1 and Γ2 are
arbitrary mappings defined as in (4.17) and Γ3 = 0, Φi = 0, i = 1, 2, 3. Moreover, it
was shown that Eq. (3.9) could have a regular bounded random integral contractor,
although the Lipschitz condition did not have to be satisfied.

In what follows, denote by CX a collection of Rk-valued stochastic processes,
X-admissible on (−∞, T ] and continuous with probability one.

In paper [16] the following existence and uniqueness theorems are proved:
Theorem 4. Let the functionals ai, bi, i = 1, 2, 3, be stochastically closed and have a
bounded random integral contractor (4.20), and let

∫ T
0 E|a1(t, ϕ0)|2dt < ∞,∫ T

0 E|b1(t, ϕ0)|2dt < ∞ and
∫ T
0

∫ t
0 E|f(t, s, ϕ0)|2ds dt < ∞ for ai, bi, i = 2, 3 instead

of f . Then Eq. (3.9) has a solution x in CX .

Theorem 5. Let the functionals ai, bi, i = 1, 2, 3, satisfy the assumptions of The-
orem 4 and the bounded random integral contractor be regular. Then the solution of
Eq. (3.9) in CX is unique.

The proof of Theorem 4 is based on the following iterative procedure, with help
of two sequences {xt

n, n ∈ N} and {yt
n, n ∈ N} in X, so that for n ≥ 0:

x0(t) = ϕ(0), 0 ≤ t ≤ T,

xn+1(t) = xn(t)− ((Axn)yn)(t) = xn(t)− yn(t) (4.22)

−
∫ t

0

[
Γ1(s, xs

n) yn(s) +
∫ s

0
Γ2(s, r, xr

n)yn(r)dr

+
∫ s

0
Γ3(s, r, xr

n) yn(r) dw(r)
]
ds
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−
∫ t

0

[
Φ1(s, xs

n) yn(s) +
∫ s

0
Φ2(s, r, xr

n) yn(r) dr

+
∫ s

0
Φ3(s, r, xr

n) yn(r) dw(r)
]
dw(s), 0 ≤ t ≤ T,

xn+1(t) = ϕ(−t), t ≤ 0,

(xt
n+1)r(s) =

{
xn+1(t− s), 0 ≤ s ≤ t ≤ T,
ϕ(s− t), s > t,

yn(t) = xn(t)− ϕ(0) (4.23)

−
∫ t

0

[
a1(s, xs

n) +
∫ s

0
a2(s, r, xr

n) dr +
∫ s

0
a3(s, r, xr) dw(r)

]
ds

−
∫ t

0

[
b1(s, xs

n) +
∫ s

0
b2(s, r, xr

n) dr +
∫ s

0
b3(s, r, xr) dw(r)

]
dw(s),

(yt
n)r = 0, t ∈ [0, T ], n = 1, 2, . . .

Note that yn(t) is determined by xn(t), i.e. xt
n.

By following the proof of this theorem, which is very long and tiring, we find
that

E||yn||2t ≤ c1
(c2t)n

n!
, t0 ≤ t ≤ T, n ∈ N, (4.24)

where c1, c2 are generic constants, and also {xt
n, n ∈ N} in X converges with proba-

bility one, uniformly in [0, T ]. Finally, we prove that {xn(t), n ∈ N} converges with
probability one, uniformly in [0, T ], to the solution x ∈ CX of Eq. (3.9).

Clearly, because the Lipschitz condition for the coefficients ai, bi, i = 1, 2, 3 of
Eq. (3.9) in general does not hold, it is not possible to prove that the sequence
of iterations (4.22) represents the Z-algorithm. In paper [17] we expose a class of
stochastic processes and introduce some modifications of the Lipschitz condition and
of the bounded random integral contractor, which enables to show that the iterative
procedure (4.22) is a special Z-algorithm. In fact, in [17] the following assertion is
closely connected with Theorem 4 and Theorem 5.

Theorem 6. Let the conditions of Theorem 5 be satisfied and the initial value ϕ0

satisfies E||ϕ0||2X < ∞. Then Eq. (3.9) has a unique solution x in CX , satisfying
E{ sup

0≤t≤T
|x(t)|2} < ∞.

Therefore, the condition E||ϕ0||2X < ∞ is imposed to restrict the class of pro-
cesses CX to its sub-class L2(CX) of stochastic processes in CX , satisfying

||x||2∗ = E||x||2T < ∞.

Of course, (L2(CX), || · ||∗) is a Banach space.
The following assertion was proved in [17]:
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Lemma 1. Let the mappings Γi, Φi, i = 1, 2, 3 satisfy the conditions (4.17). Then
for every x, z ∈ L2(CX) Eq. (4.21) has a unique solution y ∈ L2(CX). Moreover,
there exists a constant γ > 0, independent on x and z, such that

E||y||2t ≤ γ E||z||2t , t ∈ [0, T ].

The proof is based on the Banach fixed point theorem. Note that this lemma
gives us an important fact, that every bounded random integral contractor (4.20) is
regular in the space L2(CX).

The Lipschitz condition (3.10) and the bounded random integral contractor
(4.20) for the coefficients of Eq. (3.9), can be weakened in the space L2(CX) by
introducing the following modifications:

Let there exist a constant L1 > 0 such that for all (t, s) ∈ J and x, y ∈ L2(CX),

E|a1(t, xt)− a1(t, yt)|2 ≤ L1E||x− y||2t , (4.25)
E|ai(t, s, xs)− ai(t, s, ys)|2 ≤ L1E||x− y||2s, i = 2, 3,

and analogously for bi, i = 1, 2, 3. Then we say that the functionals ai, bi, i = 1, 2, 3
satisfy the modified Lipschitz condition in the space L2(CX).

Let there exist a constant K1 > 0 such that for all (t, s) ∈ J and x, y ∈ L2(CX),

E|a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt)y(t)|2 ≤ K1E||y||2t , (4.26)
E|ai(t, s, xs + ((Ax)y)s)− ai(t, s, xs)− Γi(t, s, xs)y(s)|2 ≤ K1E||y||2s,

i = 2, 3,

and analogously for bi, i = 1, 2, 3. Then we say that the set of functionals
(a1, a2, a3, b1, b2, b3) has the modified bounded random integral contractor in the space
L2(CX),

{
I +

∫ t

0

[
Γ1 +

∫ s

0
Γ2 dr +

∫ s

0
Γ3 dw(r)

]
ds (4.27)

+
∫ t

0

[
Φ1 +

∫ s

0
Φ2 dr

∫ s

0
Φ3 dw(r)

]
dw(s)

}

E
.

Obviously, if the functionals ai, bi, i = 1, 2, 3 satisfy the Lipschitz condition (3.10)
in the space L2(CX), then they satisfy the modified Lipschitz condition (4.26), while
the opposite assertion does not hold. It is not difficult to conclude that the proof
of Theorem 2 is valid with the conditions (3.10) instead of (4.26). Similarly, by
following the proofs of Theorem 4 and Theorem 5, we can see that they are valid if the
functionals ai, bi, i = 1, 2, 3 have the modified bounded random integral contractor
(4.27) instead of the bounded random integral contractor (4.20) in the space L2(CX).

The following assertion, proved in [17], summarizes the preceding considerations,
by showing the equivalence between the modified Lipschitz condition and the mod-
ified bounded random integral contractor.
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Theorem 7. The functionals ai, bi, i = 1, 2, 3 satisfy the modified Lipschitz condi-
tion (4.26) if and only if they have the modified bounded random integral contractor
(4.27).

Moreover, Theorem 7 enables us to solve the main problem from the beginning
of this section, to show that the iterative procedure (4.22) represents a special Z-
algorithm in the space L2(CX).

Theorem 8. Let the functionals ai, bi, i = 1, 2, 3 have the modified bounded random
integral contractor (4.27) and the initial value ϕ0 satisfy E||ϕ0||2

X
< ∞,∫ T

0 E|a1(t, ϕ0)|2dt < ∞,
∫ T
0 E|b1(t, ϕ0)|2dt < ∞,

∫ T
0

∫ t
0 E|f(t, s, ϕ0)|2ds dt < ∞

for ai, bi, i = 2, 3 instead of f . Then the sequence of iterations (4.22) describes the
Z-algorithm of Eq. (3.9).

Indeed, from (4.22) and (4.23) we find

xn+1(t) = ϕ(0) +
∫ t

0

{
a1(s, xs

n)− Γ1(s, xs
n) yn(s)

+
∫ s

0
[a2(s, r, xr

n)− Γ2(s, r, xr
n) yn(r)] dr

+
∫ s

0
[a3(s, r, xr

n)− Γ3(s, r, xr
n) yn(r)] dw(r)

}
ds

+
∫ t

0

{
b1(s, xs

n)− Φ1(s, xs
n) yn(s)

+
∫ s

0
[b2(s, r, xr

n)− Φ2(s, r, xr
n) yn(r)] dr

+
∫ s

0
[b3(s, r, xr

n)− Φ3(s, r, xr
n) yn(r)] dw(r)

}
dw(s), 0 ≤ t ≤ T,

xn+1(t) = ϕ(−t), t ≤ 0,

(xt
n+1)r(s) =

{
xn+1(t− s), 0 ≤ s ≤ t ≤ T,
ϕ(s− t), s > t,

Let us denote that

f1n(t, x) = a1(t, xt
n)− Γ1(t, xt

n) yn(t)
fin(t, s, x) = ai(t, s, xs

n)− Γi(t, s, xs
n) yn(s), i = 2, 3,

g1n(t, x) = b1(t, xt
n)− Φ1(t, xt

n) yn(t)
gin(t, s, x) = bi(t, s, xs

n)− Φi(t, s, xs
n) yn(s), i = 2, 3,

where yn(t) is expressed by xn(t) with help of (4.23). Then we obtain the following
sequence of equations,
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dxn+1(t) =[
f1n(t, xt

n+1) +
∫ t

0
f2n(t, s, xs

n+1) ds +
∫ t

0
f3n(t, s, xs

n+1) dw(s)
]
dt

+
[
g1n(t, xt

n+1) +
∫ t

0
g2n(t, s, xs

n+1) ds +
∫ t

0
g3n(t, s, xs

n+1) dw(s)
]
dw(t),

t ∈ [0, T ], n ∈ N,

x0
n+1 = ϕ0.

Clearly, the random functionals fin, gin, i = 1, 2, 3, satisfy the Lipschitz condition
and the linear growth condition with probability one. Moreover, from Theorem 7
we find that the functionals ai, bi, i = 1, 2,, satisfy the modified Lipschitz condition
(4.26) with the same constant L1 = 2 (K+M2)γ, where γ is a constant from Lemma
1 and M = max{αi, βi, i = 1, 2, 3}. Then, from (3.15), for every n = 0, 1, 2, . . . we
find

εn = E{ sup
J

[ |a1(t, xt
n)− f1n(t, xt

n)|2 + |a2(t, s, xs
n)− f2n(t, s, xs

n)|2

+ |a3(t, s, xs
n)− f3n(t, s, xs

n)|2 + |b1(t, xt
n)− g1n(t, xt

n)|2
+ |b2(t, s, xs

n)− b2n(t, s, xs
n)|2 + |b3(t, s, xs

n)− b3n(t, s, xs
n)|2 ]}

≤ 6M sup
t∈[0,T ]

E|yn(t)|2.

Because of the norm in the space X, from which we have |yn(t)| ≤ ||yt
n||X , and from

the estimation (4.24), we find

εn ≤ 6M sup
t∈[0,T ]

E||yt
n||X ≤ 6Mc1

(c2t)n

n!
, n ∈ N,

which implies
∑∞

n=1 εn < ∞. Therefore, from the weakened version of Theorem
3, it follows that {(f1n, f2n, f3n, g1n, g2n, g3n), n ∈ N} represents a Z-algorithm for
Eq. (3.9). It means that the sequence of iterations {xn, n ∈ N} converges with
probability one, uniformly in [0, T ], to the solution x ∈ L2(CX) of this equation,
which is in accordance with the conclusion of the proof of Theorem 4.

Conclusion:
In general, it could be very interesting to study how the speed of convergence of
the sequence of iterations {xn, n ∈ N} to the solution x of the original equation,
depends on a choice of a determining sequence, and, also, how to choose the best
one. Our further intention is to construct some other determining sequences and
special Z-algorithms for different classes of stochastic differential equations and to
choose the best ones, in the sense that the iterative equations could be effectively
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solvable or suitable for numerical treatments, with the fastest convergence of their
solutions to the solution of the original equation.

Likewise, the iterative method presented in this paper, could be appropriately
extended to stochastic differential equations including martingales and martingale
measures instead of the Brownian motion process.

References

[1] M. Altman, it Inverse differentiability contractors and equations in Banach space, Stu-
dia Math., 46 (1973), 1–15.

[2] M. Altman, it Contractors and contractor directions, Marcel Dekker, New York, 1978.

[3] L. Arnold, Stochastic Differential Equations, Theory and Applications, New York, John
Wiley & Sons, 1974.

[4] M.A. Berger, V.J Mizel, Volterra equations with Ito integrals I, Journal of Integral
Equations, 2 (1980), 187–245.

[5] B.D. Coleman, V.J. Mizel:Norms and semigroups in the theory of fading memory, Arch.
Rational Mech. Anal., 23 (1966), 87–123.

[6] B.D. Coleman, V.J. Mizel: On the general theory of fading memory, Arch. Rational
Mech. Anal., 29 (1968), 18–31.

[7] B.D. Coleman, D.R. Owen: On the initial value problem for a class of functional-
differential equations, Arch. Rational Mech. Anal., 55 (1974), 275–299.

[8] I.I. Gihman, A.V. Skorohod, Stochastic Differential Equations and Their Applications,
Kiev, Naukova Dumka 1982 (In Russian).

[9] A.R. Ibrahim, Parametric Random Vibration, New York, Wiley 1985.

[10] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Am-
sterdam, North Holand 1981.

[11] K. Ito, Stochastic Differential Equations, Memorial Mathematical Society, 4 (1951),
1–51.
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[16] M. Jovanović, S. Janković, On a class of nonlinear stochastic hereditary integrodiffer-
ential equations, Indian J. of Pure and Appl. Math., 28 (8) (1987), 1061–1082.



Some iterative methods for solving HSIDE 21
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NEKE ANALITIČKE ITERATIVNE METODE ZA REŠAVANJE
RAZLIČITIH KLASA STOHASTIČKIH NASLEDNIH

INTEGRODIFERENCIJALNIH JEDNAČINA

Svetlana Janković, Miljana Jovanović

Nasledni fenomeni su posebno pogodni za proučavanje fenomena u mehanici kontinuuma
materijala sa memorijom. Matematički modeli takvih pojava se opisuju determinističkim
naslednim diferencijalnim jednačinama, proučavanim u mnogim radovima i monografijama.
Kasnije, ovi pojmovi su adekvatno prošireni na istraživanja pod uticajem Gaussovog belog
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šuma, sa matematičkom interpretacijom stohastičkim naslednim diferencijalnim jednačina-
ma tipa Itoa.

U ovom radu se razmatra opšta analitička iterativna metoda za rešavanje stohastičih
naslednih integrodiferencijalnih jednačina tipa Itoa. Daju se dovoljni uslovi pri kojima niz
iteracija konvergira u verovatnoći ka rešenju originalne jednačine. Ova metoda je opšta, u
smislu da su mnoge poznate iterativne metode njeni specijalni slučajevi, na primer metoda
sukcesivnih aproksimacija Picard-Lindelofa. Prikazane su i neke druge iterativne metode sa
linearizacijom koeficijenata originalne jednačine.

Specijalno, koristeći koncept ograničenog slučajnog integralnog kontraktora u smislu Alt-
mana i Kuoa, pokazuje se da je iterativna metoda primenjena u dokazu teoreme egzistencije i
jedinstvenosti rešenja stohastičke nasledne integrodiferencijalne jednačine takodje specijalan
slučaj prethodno opisane opšte iterativne metode.


