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Abstract. The present paper is a continuation of the paper [6] in which the existence and
uniqueness of solutions for nonlinear stochastic hereditary integrodifferential equations of the Ito
type are considered, using the concept of a random integral contractor, which includes the Lip-
schitz condition as a special case. Here, we introduce a notion of a modified Lipschitz condition
and of a modified random integral contractor, and we give conditions for their equivalence for a
special class of stochastic processes. We also give new existence and uniqueness theorems.123
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1. Introduction

Let us briefly give some notations and known results of the previous paper [6] and of the basic
paper [8] of Mizel and Trutzer treating stochastic hereditary differential equations of the Ito type.
Remember that hereditary phenomena matematically describe various problems in continuum
mechanics of materials with memories, as a version of the theory of ”fading memory” spaces.

Let Rn be the real n-dimensional Euclidean space and Lρ
p (1 ≤ p < ∞) be the usual space

of classes of measurable functions, i.e.,

Lρ
p =



ϕ | ϕ : R+ → Rn ∴

∞∫

0

|ϕ(s)|pρ(s) ds < ∞


 .

Here ρ : R+ → R+ is an influence function with relaxation property, satisfying the following

conditions: ρ is summable on R+, for every σ ≥ 0 one has K(σ) = ess sups∈R+
ρ(s + σ)

ρ(s)
≤

K < ∞, K(σ) = ess sups∈R+
ρ(s)

ρ(s + σ)
< ∞. It is proved in [4] that ρ is essentially bounded,

essentially strictly positive and s · ρ(s) → 0 as s →∞.
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Consider a product space X = Rn × Lρ
p , i.e. a past–history space of elements x = (ϕ(0), ϕ),

with the norm

||x||
X

=


|ϕ(0)|p +

∞∫

0

|ϕ(s)|pρ(s) ds




1/p

= (|ϕ(0)|p + ||ϕ||pr)1/p
.

Of course, X is a Banach space.
The measurable function x : (−∞, T ] → Rn, T =const∈ R, is X–admissible provided that

for each t ∈ (−∞, T ] the function xt, called its history up to t and defined by

xt
r(s) = x(t− s), s ∈ R+,

is itself a member of X.
The following inequality, utilised in the paper [8], is needed in our subsequent discussion:

||xt||2
X
≤ k̃


|x(t)|2 + K

2/p||xt0 ||2r +




t∫

t0

|x(u)|pρ(t− u) du




2/p

 , (1.1)

where k̃ = 32/p−1 ∨ 1.
Let w = (wt, t ≥ 0) be a onedimensional standard Wiener process, based on a complete

probability space (Ω,F , P ), adapted to the usual family (Ft, t ≥ 0) of nondecreasing sub–σ–
algebras of F .

For t0 ≥ 0 let Xt0 be the space of measurable random processes x(t), t ≤ t0, such that xt0 ∈ X

for a.e. ω and such that for every t, x(t) is independent of {wu−wt0 : u ≥ t0}. By the structure
of the space X, it follows that xt ∈ X for all t ≤ t0 a.s.

Lemma 1.1. (Mizel, Trutzer, [13, p. 5]). Let x(t), t ∈ R, be a (jointly) measurable stochastic
process such that σ{x(u) : u ≤ t0} = Gt0 is independent of wt − wt0 , t ≥ t0, and such that for
t ≥ t0, x(·) is continuous and Gt := Gt0 ∨ Ft–progressivelly measurable. Assume that for a.e. ω

the function xt0(·, ω) ∈ X. Then for t ≥ t0, xt(ω) ∈ X for a.e. ω and the process xt with values
in X is a.s. continuous and Gt–progressively measurable.

In the present paper we consider the stochastic hereditary integrodifferential equation of the
Ito type (t0 = 0 for simplicity)

dx(t) =


a1(t, xt) +

t∫

0

a2(t, s, xs) ds +

t∫

0

a3(t, s, xs) dw(s)


 dt (1.2)

+


b1(t, xt) +

t∫

0

b2(t, s, xs) ds +

t∫

0

b3(t, s, xs) dw(s)


 dw(t), t ∈ [0, T ]

x0 = ϕ0,
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earlier studied in details in the paper [8], which presents an extension of the Ito–Volterra equa-
tions developed by Berger and Mizel ([2]). Here w(t) is a onedimensional standard Wiener
process defined as above and the initial value ϕ0, independent on w, is assumed to belong to
X0. We also assume that x(t) is an Rn–valued stochastic process and the Borel measurable
functionals ai, bi, i = 1, 2, 3 are defined in J ×X with values in Rn.

A stochastic process (x(t), t ∈ (−∞, T ]), is a (strong) solution of eq.(1.2) for t ∈ [0, T ] if x(t)
is nonanticipating for t ≤ T , xt ∈ X a.s for t ∈ [0, T ], all Lebegues’s and Ito’s integrals in (1.2)
exist, x0 = ϕ0 and eq. (1.2) holds for each t ∈ [0, T ].

Of course, if (x(t), t ∈ (−∞, T ]) is a solution of eq. (1.2), then xt = (x(t), xt
r) for all t ∈ [0, T ],

where

x(t) =
{

x(t), 0 ≤ t ≤ T

ϕ(−t), t ≤ 0
xt

r(s) =
{

x(t− s), 0 ≤ s ≤ t

ϕ(s− t), s > t.

From the structure of the solution xt and from Lemma 1.1 it follows that if x(t) is a.s. continuous,
then xt is also a.s. continuous.

In the paper [8] sufficient conditions of the existence and uniqueness of the solution for eq.
(1.2) are given:

Theorem A. (Mizel, Trutzer, [8, p. 18]) Assume that the functionals ai, bi, i = 1, 2, 3 satisfy
the global Lipschitz condition and the usual condition of the restriction on growth on the last
argument, i.e. assume that there exists a constant L > 0 such that for all (t, s) ∈ J and x, y ∈ X,

|a3(t, s, x)− a3(t, s, y)| ≤ L ||x− y||X , (1.3)

|a3(t, s, x)| ≤ L (1 + ||x||X ), (1.4)

and similarly for others. Assume that ϕ0 ∈ X0 and E||ϕ0||2
X
≤ ∞. Then there exists a unique

a.s. continuous solution x of eq. (1.2), satisfying E sup
0≤t≤T

|x(t)|2 < ∞.

In what follows, denote by CX a collection of Rn–valued stochastic processes, X–admissible
on (−∞, T ], almost surely continuous and nonanticipating with respect to the family {Gt, t ≥ 0}.

Following the basic ideas of Altman ([1]) and Kuo ([7]), and later of Murge and Pachpatte
([9]), Zhang and Padgett ([11]) and others, the concept of a bounded random integral contractor
was introduced in the previous paper [6], to prove the existence and uniqueness of the solution
of eq. (1.2). In the present paper, our intention is to investigate relations between different
conditions for the existence and uniqueness of the solution of this equation. Because of that, let
us briefly employ some elements of the contractor theory.

Let

Γ1 : [0, T ]×X → Rn ×Rn, Φ1 : [0, T ]×X → Rn ×Rn

Γi : J ×X → Rn ×Rn, Φi : J ×X → Rn ×Rn, i = 2, 3

be measurable mappings, bounded in the sense that there exist positive constants αi, βi, i =
1, 2, 3, such that for every (t, s, x) ∈ J ×X, y ∈ Rn,

|Γ1(t, x)y| ≤ α1|y|, |Φ1(t, x)y| ≤ β1|y|
|Γi(t, s, x)y| ≤ αi|y|, |Φi(t, s, x)y| ≤ βi|y|, i = 2, 3.

(1.5)
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Let, also, ((Ax)y)t be an element of the space X, i.e., ((Ax)y)t = ((Ax)y)(t), yt
r), where

((Ax)y)(t) = y(t)

+

t∫

0


 Γ1(s, xs)y(s) +

s∫

0

Γ2(s, r, xr)y(r) dr +

s∫

0

Γ3(s, r, xr)y(r) dw(r)


 ds

+

t∫

0


 Φ1(s, xs)y(s) +

s∫

0

Φ2(s, r, xr)y(r) dr +

s∫

0

Φ3(s, r, xr)y(r) dw(r)


 dw(s),

(1.6)

and yt
r is an element on Lρ

p.

Suppose there exists a positive constant K such that, for any xt, yt, in X and (t, s) ∈ J , the
following inequalities hold almost surely:

| a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt)y(t)| ≤ K|| y||t
| ai(t, s, xs + ((Ax)y)s)− ai(t, s, xs)− Γi(t, s, xs)y(s)| ≤ K|| y||s, i = 2, 3

| b1(t, xt + ((Ax)y)t)− b1(t, xt)− Φ1(t, xt)y(t)| ≤ K|| y||t
| bi(t, s, xs + ((Ax)y)s)− bi(t, s, xs)− Φi(t, s, xs)y(s)| ≤ K|| y||s, i = 2, 3,

(1.7)

where
|| y||t = sup

0≤s≤t
|| ys||X .

Then the set of functionals (a1, a2, a3, b1, b2, b3) has a bounded random integral contractor



I +

t∫

0


Γ1 +

s∫

0

Γ2 dr +

s∫

0

Γ3 dw(r)


 ds +

t∫

0


Φ1 +

s∫

0

Φ2 dr

s∫

0

Φ3 dw(r)


 dw(s)



 (1.8)

A bounded random integral contractor is said to be regular if the linear equation

(Ax)y = z (1.9)

has a solution y in X for any x and z in X.

A functional h : [0, T ]×X → Rn is said to be stochastically closed if for any x and xn in X,
such that xn → x and h(·, x·n) → y in L2([0, T ]× Ω), we have y(t) = h(t, xt) for every t ∈ [0, T ]
almost surely. The stochastic closeness of a functional h : J ×X → Rn is defined analogously.

It is clear that if the functionals ai, bi, i = 1, 2, 3, satisfy the Lipschitz condition (1.3), then
they are stochastically closed and the set of functionals (a1, a2, a3, b1, b2, b3) has a trivial bounded
random integral contractor (1.8) for Γi = Φi = 0, i = 1, 2, 3. On the other hand, in the paper
[6] it was also shown the Lipschitz condition implies the existence of a class of bounded random
integral contractors (1.8) in which Γ1 and Γ2 are arbitrary mappings defined as in (1.5) and
Γ3 = 0, Φi = 0, i = 1, 2, 3. Moreover, it was shown that eq. (1.2) could have a regular bounded
random integral contractor, although the Lipschitz condition did not have to be satisfied.
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Theorem B. (Jovanović, Janković, [5, p. 1068]) Suppose that the functionals ai, bi, i = 1, 2, 3,
are stochastically closed and have a bounded random integral contractor (1.8). Suppose, also, that
T∫
0

E
∣∣a1(t, ϕ0)

∣∣2dt < ∞,
T∫
0

E
∣∣b1(t, ϕ0)

∣∣2dt < ∞, and
T∫
0

t∫
0

E
∣∣f(t, s, ϕ0)

∣∣2ds dt < ∞ for ai, bi, i =

2, 3. Then eq. (1.2) has a solution x in CX .

Theorem C. (Jovanović, Janković, [5, p. 1068]) Let the functionals ai, bi, i = 1, 2, 3, satisfy
the assumptions of Theorem B and let the bounded random integral contractor be regular. Then
the solution of eq. (1.2) in C

X
is unique.

The main purpose of the present paper is to give a class of stochastic processes and to define
modifications of the Lipschitz condition and of the bounded random integral contractor in this
class, such that the previously cited theorems for the existence and uniquenes are valid, as well
as to estabilish relations between these conditions.

2. Main results

The following assertion, although independent of the previously mentioned problems, is closely
connected with Theorem B and Theorem C.

Theorem 2.1. Let the conditions of Theorem C be satisfied and let the initial value ϕ0 ∈ X0

satisfy E||ϕ0||2
X

< ∞. Then eq. (1.2) has a solution x in CX , satisfying

E sup
0≤t≤T

|x(t)|2 < ∞ (2.1)

Proof. Because from Theorem B and Theorem C it follows that eq. (1.2) has a unique solution
x ∈ CX , it remains to prove that (2.1) is valid.

Since the bounded random integral contractor (1.8) is regular, then the linear operator equa-
tion

((Ax)y)t = ϕ0 − xt, t ∈ [0, T ], (2.2)

has a solution yt ∈ X, t ∈ [0, T ]. Because x ∈ CX , if tollows that y ∈ CX . From (1.6) we have

y(t) +

t∫

0


Γ1(s, xs)y(s) +

s∫

0

Γ2(s, r, xr)y(r) dr +

s∫

0

Γ3(s, r, xr)y(r) dw(r)


 ds

+

t∫

0


Φ1(s, xs)y(s) +

s∫

0

Φ2(s, r, xr)y(r) dr +

s∫

0

Φ3(s, r, xr)y(r) dw(r)


 dw(s)

= ϕ(0)− x(t),

yt
r = ϕ0

r − xt
r.

(2.3)
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If we substitute the right side in (2.3) with (1.2), we obtain

y(t) =−
t∫

0


a1(s, xs) + Γ1(s, xs)y(s) +

s∫

0

[
a2(s, r, xr) + Γ2(s, r, xr)y(r)

]
dr

+

s∫

0

[
a3(s, r, xr) + Γ3(s, r, xr)y(r)

]
dw(r)


 ds

−
t∫

0


b1(s, xs) + Φ1(s, xs)y(s) +

s∫

0

[
b2(s, r, xr) + Φ2(s, r, xr)y(r)

]
dr

+

s∫

0

[
b3(s, r, xr) + Φ3(s, r, xr)y(r)

]
dw(r)


 dw(s), t ∈ [0, T ].

By applying the elementary inequality
( k∑

i=1

ai

)2

≤ k

k∑

i=1

a2
i , for k = 6 we obtain

E sup
0≤u≤t

|y(u)|2 ≤ 6
6∑

i=1

Ji,

where

J1 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

[
a1(s, xs) + Γ1(s, xs)y(s)

]
ds

∣∣∣∣∣∣

2

,

J2 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
a2(s, r, xr) + Γ2(s, r, xr)y(r)

]
dr ds

∣∣∣∣∣∣

2

,

J3 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
a3(s, r, xr) + Γ3(s, r, xr)y(r)

]
dw(r) ds

∣∣∣∣∣∣

2

,

J4 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

[
b1(s, xs) + Φ1(s, xs)y(s)

]
dw(s)

∣∣∣∣∣∣

2

,

J5 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
b2(s, r, xr) + Φ2(s, r, xr)y(r)

]
dr dw(s)

∣∣∣∣∣∣

2

,

J6 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
b3(s, r, xr) + Φ3(s, r, xr)y(r)

]
dw(r) dw(s)

∣∣∣∣∣∣

2

.

To estimate these integrals, we shall use (2.2), from where

a1(s, xs + ((Ax)y)s) = a1(s, ϕ0) a.s., b2(s, r, xr + ((Ax)y)r) = b2(s, r, ϕ0) a.s.,
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and similarly for the other functionals. By applying (1.6), the usual stochastic integral iso-
metry, Schwarz inequality, Doob inequality and integration by parts, we come to the following
estimations:

J1 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

[
a1(s, xs) + Γ1(s, xs)y(s)− a1(s, xs + ((Ax)y)s)

]
ds

+

u∫

0

a1(s, ϕ0) ds

∣∣∣∣∣∣

2

≤ 2TK2

t∫

0

E||y||2s ds + 2T

T∫

0

E|a1(s, ϕ0)|2 ds,

J2 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
a2(s, r, xr) + Γ2(s, r, xr)y(r)− a2(s, r, xr + ((Ax)y)r)

]
dr ds

+

u∫

0

s∫

0

a2(s, r, ϕ0) dr ds

∣∣∣∣∣∣

2

≤ T 3K2

t∫

0

E||y||2s ds + 2T

T∫

0

s

s∫

0

E|a2(s, r, ϕ0)|2 dr ds,

J3 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
a3(s, r, xr) + Γ3(s, r, xr)y(r)− a3(s, r, xr + ((Ax)y)r)

]
dw(r) ds

+

u∫

0

s∫

0

a3(s, r, ϕ0) dw(r) ds

∣∣∣∣∣∣

2

≤ 2T 2K2

t∫

0

E||y||2s ds + 2T

T∫

0

s∫

0

E|a3(s, r, ϕ0)|2 dr ds,

J4 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

[
b1(s, xs) + Φ1(s, xs)y(s)− b1(s, xs + ((Ax)y)s)

]
dw(s)

+

u∫

0

b1(s, ϕ0) dw(s)

∣∣∣∣∣∣

2

≤ 8K2

t∫

0

E||y||2s ds + 8

T∫

0

E|b1(s, ϕ0)|2 ds,
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J5 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
b2(s, r, xr) + Φ2(s, r, xr)y(r)− b2(s, r, xr + ((Ax)y)r)

]
dr dw(s)

+

u∫

0

s∫

0

b2(s, r, ϕ0) dr dw(s)

∣∣∣∣∣∣

2

≤ 8T 2K2

t∫

0

E||y||2s ds + 8

T∫

0

s

s∫

0

E|b2(s, r, ϕ0)|2 dr ds,

J6 = E sup
0≤u≤t

∣∣∣∣∣∣

u∫

0

s∫

0

[
b3(s, r, xr) + Φ3(s, r, xr)y(r)− b3(s, r, xr + ((Ax)y)r)

]
dw(r) dw(s)

+

u∫

0

s∫

0

b3(s, r, ϕ0) dw(r) dw(s)

∣∣∣∣∣∣

2

≤ 8TK2

t∫

0

E||y||2s ds + 8

T∫

0

s∫

0

E|b3(s, r, ϕ0)|2 dr ds.

Therefore,

E sup
0≤u≤t

|y(u)|2 ≤ c1

t∫

0

E||y||2s ds + c2, t ∈ [0, T ],

where c1 and c2 are some generic constants. Since from (2.3) we have ||y0||r = 0, by using the
inequality (1.1) we obtain

E||y||2t ≤ k̃
(
1 + ||ρ||2/p

L1

)
E sup

0≤u≤t
|y(u)|2

≤ k̃
(
1 + ||ρ||2/p

L1

)

 c1

t∫

0

E||y||2s ds + c2


 , t ∈ [0, T ],

where ||ρ||
L1

=

∞∫

0

ρ(s) ds. By applying now the usual Gronwall-Bellman inequality, we find

E||y||2t ≤ ∞, t ∈ [0, T ].

Finally, it is easy to prove (2.1) starting from (2.3). By using the foregoing estimation, the
basic property of the norm || · ||X from which E sup

0≤s≤t
|y(s)|2 ≤ E||y||2t , and the boundeness of
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the mappings Γi, Φi, i = 1, 2, 3 in the sense (1.5), we come to the estimation:

E sup
0≤t≤T

|x(t)|2 ≤ 8


 E|ϕ(0)|2 + E sup

0≤t≤T
|y(t)|2 + E sup

0≤t≤T

∣∣∣∣∣∣

t∫

0

Γ1(s, xs)y(s) ds

∣∣∣∣∣∣

2

+ E sup
0≤t≤T

∣∣∣∣∣∣

t∫

0

s∫

0

Γ2(s, r, xr)y(r) dr ds

∣∣∣∣∣∣

2

+ E sup
0≤t≤T

∣∣∣∣∣∣

t∫

0

s∫

0

Γ3(s, r, xr)y(r) dw(r) ds

∣∣∣∣∣∣

2

+ E sup
0≤t≤T

∣∣∣∣∣∣

t∫

0

Φ1(s, xs)y(s) dw(s)

∣∣∣∣∣∣

2

+ E sup
0≤t≤T

∣∣∣∣∣∣

t∫

0

s∫

0

Φ2(s, r, xr)y(r) dr dw(s)

∣∣∣∣∣∣

2

+ E sup
0≤t≤T

∣∣∣∣∣∣

t∫

0

s∫

0

Φ3(s, r, xr)y(r) dw(r) dw(s)

∣∣∣∣∣∣

2



≤ 8
(
E||ϕ0||2

X
+ E||y||2

T

)

+ 8
(

α2
1T + α2

2

T 3

2
+ α2

3T
2 + 4β2

1 + 4β2
2T 2 + 4β2

3T

) t∫

0

E||y||2s ds

<∞. ¤

Moreover, from Theorem 2.1 and from (1.1) it follows that

E||x||2
T
≤ k̃

(
1 + ||ρ||2/p

L1

)
E sup

0≤t≤T
|x(t)|2 + k̃ K

2/p||ϕ0||2 < ∞.

This fact gives us a motivation to consider the existence and uniqueness problems for eq. (1.2)
on a class L2(CX ) of stochastic processes x ∈ CX with the norm

||x||2∗ : = E||x||2
T

< ∞.

Of course,
(
L2(CX

), || · ||∗
)

is a Banach space.

Having in mind partially the ideas from papers [5] and [10], let us define the next norm on
the space L2(CX

) : For a fixed number µ > 0 and for every x ∈ L2(CX
), denote

|||x|||2 : = sup
0≤t≤T

E
{||x||2t · e−2µt

}
. (2.4)

Since
||x||2∗ · e−2µT ≤ |||x|||2 ≤ ||x||2∗,

the norms ||| · ||| and || · ||∗ are equivalent. Therefore,
(
L2(CX

)
, ||| · |||) is also a Banach space.

We need the following assertion, essentially used to study the relations between different
conditions for the existence and uniqueness of solutions of eq. (1.2).
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Lemma 2.1. Let the mappings Γi,Φi, i = 1, 2, 3 satisfy the conditions (1.5). Then for every
x, z ∈ L2(CX) eq. (1.9) has a unique solution y ∈ L2(CX). Moreover, there exists a constant
γ > 0, independent on x and z, such that

E||y||2t ≤ γE||z||2t , t ∈ [0, T ]. (2.5)

Proof. Let us define an operator S on the space L2(CX) in the following way: For fixed
x, z ∈ L2(CX) and arbitrary y ∈ L2(CX), let

(Sy)(t) : = z(t)

−
t∫

0


 Γ1(s, xs)y(s) +

s∫

0

Γ2(s, r, xr)y(r) dr +

s∫

0

Γ3(s, r, xr)y(r) dw(r)


 ds

−
t∫

0


 Φ1(s, xs)y(s) +

s∫

0

Φ2(s, r, xr)y(r) dr +

s∫

0

Φ3(s, r, xr)y(r) dw(r)


 dw(s),

(Sy)t
r = zt

r .

(2.6)

Clearly, from the basic properties of Lebesgue and Ito integrals, it follows that Sy ∈ CX . Using
the inequality (1.1), for 0 ≤ s ≤ t ≤ T we obtain

||(Sy)s||2
X
≤ k̃


 |(Sy)(s)|2 + K

2/p||z0||2r +




s∫

0

|(Sy)(u)|pρ(s− u) du




2/p



≤ k̃
(
1 + ||ρ||2

L1

)
sup

0≤s≤t
|(Sy)(s)|2 + k̃ K

2/p||z||2s.

(2.7)

Denote B = k̃
(
1 + ||ρ||2/p

L1

)
and M = max{αi, βi, i = 1, 2, 3}. By applying the previously used
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inequalities and stochastic integral isometry on (2.6), we find

E||Sy||2t = E sup
0≤s≤t

||(Sy)s||2
X

≤ k̃ K
2/p||z||2t + 7B


 E||z||2t + t

t∫

0

E|Γ1(s, xs)y(s)|2 ds

+ t

t∫

0

s

s∫

0

E|Γ2(s, u, xu)y(u)|2 du ds + t

t∫

0

s∫

0

E|Γ3(s, u, xu)y(u)|2 du ds

+ 4

t∫

0

E|Φ1(s, xs)y(s)|2 ds + 4

t∫

0

s

s∫

0

E|Φ2(s, u, xu)y(u)|2 du ds

+4

t∫

0

s∫

0

E|Φ3(s, u, xu)y(u)|2 du ds




≤ (
k̃ K

2/p
+ 7B

)
E||z||2t

+ 7BM2(T + 4)




t∫

0

E||ys||2
X

ds + (T + 1)

t∫

0

s∫

0

E||yu||2
X

du ds




≤ (
k̃ K

2/p
+ 7B

)
E||z||2t + N

t∫

0

E||ys||2
X

ds, t ∈ [0, T ],

(2.8)

where N is a constant depending on B, M and T . Finally,

||Sy||2∗ ≤
(
k̃ K

2/p
+ 7B

) ||z||2∗ + NT ||y||2∗ < ∞.

Therefore, Sy ∈ L2(CX), i.e. S : L2(CX) → L2(CX).

Next, we shall see that there exists a constant µ > 0 for which the operator S is a contraction.
For arbitrary y1, y2 ∈ L2(CX), from (2.6) it follows that (Sy1)t

r− (Sy2)t
r = 0 for t ∈ [0, T ]. Then

from the estimation (2.7) we get

||(Sy1)s − (Sy2)s||2
X
≤ B sup

0≤s≤t
|(Sy1)(s)− (Sy2)(s)|2, 0 ≤ s ≤ t ≤ T.

Similarly, by repeating the procedures used in (2.8), we find

E||Sy1 − Sy2||2t ≤ N1

t∫

0

E||ys
1 − ys

2||2X ds, t ∈ [0, T ],
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where N1 = 6BN . Thus for a number µ > 0 we obtain

E||Sy1 − Sy2||2t ≤ N1

t∫

0

E sup
0≤u≤s

||yu
1 − yu

2 ||2X · e−2µs · e2µs ds

≤ N1 |||y1 − y2|||2
t∫

0

e2µs ds

≤ N1

2µ
· e2µt · |||y1 − y2|||2, 0 ≤ t ≤ T.

So, for µ > 2N1 + 1 we have

|||Sy1 − Sy2|||2 ≤ sup
0≤t≤T

E||Sy1 − Sy2||2t · e−2µt <
1
4
|||y1 − y2|||2,

and, therefore, S is a contraction. By the Banach fixed point theorem it follows that eq. (1.2)
has a unique solution y ∈ L2(CX), which completes the proof of the first part of Lemma 2.1.

In order to prove the second part of this lemma, we need the following version of the Gronwall
– Bellman inequality (Bainov, Simeonov [2, p. 3]):

Let u(t), p(t) and q(t) be continuous functions in [a, b] and let q(t) be nonnegative in [a, b].
Suppose

u(t) ≤ p(t) +

t∫

a

q(s)u(s) ds, t ∈ [a, b]. (2.9)

Then

u(t) ≤ p(t) +

t∫

a

p(s)q(s) exp
( t∫

s

q(u) du
)
ds, t ∈ [a, b].

By putting Sy = y in (2.8) and by using E||ys||2
X
≤ E||y||2s, we obtain

E||y||2t ≤
(
k̃ K

2/p
+ 7B

)
E||z||2t + N

t∫

0

E||y||2s ds, t ∈ [0, T ].

By applying the cited integral inequality (2.9), it is easy to arrive at the desired relation (2.5),
in which γ is a generic constant depending on B, N, T, k̃, K. Thus this lemma is completely
proved. ¤

Now, it is easy to formulate the following assertion:

Theorem 2.2. Let the conditions of Theorem B be satisfied and let the initial value ϕ0 ∈ X0

satisfy E||ϕ0||2
X

< ∞. Then eq. (1.2) has a unique solution x in L2(CX ).

Proof. The proof immediately holds from Theorem 2.1, since from Lemma 2.1 it follows that
every bounded random integral contractor (1.8) is regular on the space L2(CX). ¤

Let us introduce the following version of the Lipschitz condition:
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Definition 2.1. Let there exist a constant L1 > 0 such that for all (t, s) ∈ J and x, y ∈ L2(CX
),

E|a1(t, xt)− a1(t, yt)|2 ≤ L1E||x− y||2t ,
E|ai(t, s, xs)− ai(t, s, ys)|2 ≤ L1E||x− y||2s, i = 2, 3,

(2.10)

and analogously for bi, i = 1, 2, 3. Then we say that the functionals ai, bi, i = 1, 2, 3 satisfy the
modified Lipschitz condition on the space L2(CX

).

Obviously, if the functionals ai, bi, i = 1, 2, 3 satisfy the Lipschitz condition (1.3) on the space
L2(CX ), then they satisfy the modified Lipschitz condition (2.10). Moreover, following the proofs
of Theorem A from the paper [8], it is not difficult to conclude that this theorem is valid with
the condition (2.10) instead of (1.3).

Lemma 2.1 can be applied to express a relation between the bounded random integral con-
tractor and the modified Lipschitz condition on the space L2(CX).

Proposition 2.1. Let the functionals ai, bi, i = 1, 2, 3 from eq. (1.2) have a bounded random
integral contractor (1.8). Then they satisfy the modified Lipcshitz condition (2.10) on the space
L2(CX).

Proof. Let (1.8) be a bounded random integral contractor for the functionals ai, bi, i = 1, 2, 3.
Then from Lemma 2.1, for fixed x, z ∈ L2(CX) there exists a unique solution y ∈ L2(CX) of eq.
(1.9). From (1.7) it follows that

|a1(t, xt + zt)− a1(t, xt)− Γ1(t, xt)y(t)| ≤ K ||y||t a.s.

From the properties (1.5) for the mappings Γi, Φi, i = 1, 2, 3 we have

|a1(t, xt + zt)− a1(t, xt)|2 ≤ 2|a1(t, xt + zt)− a1(t, xt)− Γ1(t, xt)y(t)|2 + 2|Γ1(t, xt)y(t)|2
≤ 2(K2 + α2

1) ||y||2t a.s.

Finally, by using the estimation (2.5) from Lemma 2.1, we find

E|a1(t, xt + zt)− a1(t, xt)|2 ≤ 2(K2 + α2
1)E||y||2t

≤ 2(K2 + α2
1) γ E||z||2t , t ∈ [0, T ],

and analogously for the other functionals, which completes the proof. ¤

Since the opposite assertion with respect to Proposition 2.1 is generally not valid, we introduce
the notion of a modified bounded random integral contractor on the space L2(CX).

Definition 2.2. Let there exists a constant K1 > 0 such that for all (t, s) ∈ J and x, y ∈
L2(CX

),

E|a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt)y(t)|2 ≤ K1E||y||2t ,
E|ai(t, s, xs + ((Ax)y)s)− ai(t, s, xs)− Γi(t, s, xs)y(s)|2 ≤ K1E||y||2s, i = 2, 3,

(2.11)



14

and analogously for bi, i = 1, 2, 3. Then we say that the set of functionals (a1, a2, a3, b1, b2, b3)
has a modified bounded random integral contractor on the space L2(CX )



I +

t∫

0


Γ1 +

s∫

0

Γ2dr +

s∫

0

Γ3dw(r)


 ds +

t∫

0


Φ1 +

s∫

0

Φ2dr

s∫

0

Φ3dw(r)


 dw(s)





E

. (2.12)

Let us remember that by following the proofs of Theorem B, Theorem C and Theorem 2.2,
we can see that they are valid if the functionals ai, bi, i = 1, 2, 3 have the modified bounded
random integral contractor (2.12) instead of the bounded random integral contractor (1.8) on
the space L2(CX).

It is easy now to prove the equivalence between the modified Lipschitz condition (2.10) and
the modified bounded random integral contractor (2.12).

Proposition 2.2. The functionals ai, bi, i = 1, 2, 3 satisfy the modified Lipschitz condition
(2.10) if and only if they have the modified bounded random integral contractor (2.12).

Proof. First, from x, y ∈ L2(CX) it follows (Ax)y ∈ L2(CX). Starting from (1.6) and applying
the same reasoning as for the operator S defined with (2.6), from (2.8) we obtain

E||(Ax)y||2t ≤ LE||y||2t , t ∈ [0, T ], (2.13)

where L1 is some generic constant.
Now, let the functionals ai, bi, i = 1, 2, 3 satisfy the modified Lipschitz condition (2.10). Then

for every t ∈ [0, T ] and x, y ∈ L2(CX), by applying (2.13) we find

E|a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt)y(t)|2 ≤ 2L1E||(Ax)y||2t + 2α2
1 E||y||2t

≤ 2
(
L1L + α2

1

)
E||y||2t ,

and analogously for the other functionals. Since the relations (2.11) are satisfied, then the set
of functionals (a1, a2, a3, b1, b2, b3) has the modified bounded random integral contractor (2.12).

Conversely, let the set of functionals (a1, a2, a3, b1, b2, b3) has the modified bounded random
integral contractor (2.12). Then from Lemma 2.1 it follows that for every x, z ∈ L2(CX) eq.
(Ax)y = z has a unique solution y ∈ L2(CX), such that E||y||2t ≤ γ E||z||2t for all t ∈ [0, T ].
Therefore,

E|a1(t, xt + zt)− a1(t, xt)|2 ≤ 2E|a1(t, xt + ((Ax)y)t)− a1(t, xt)− Γ1(t, xt)y(t)|2
+ 2E|Γ1(t, xt)y(t)|2

≤ 2(K1 + α2
1)E||y||2t

≤ 2(K1 + α2
1) γ E||z||2t .

Similar proof holds for the other functionals. Thus the assertion is completely proved. ¤

The following theorem summarises the foregoing assertions:
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Theorem 2.3. Let the functionals ai, bi, i = 1, 2, 3 satisfy the modified Lipschitz condition

(2.12). Let also the initial value ϕ0 ∈ X0 satisfy E||ϕ0||2
X

< ∞,
T∫
0

E|a1(t, ϕ0)|2dt < ∞,

T∫
0

E|b1(t, ϕ0)|2dt < ∞ and
T∫
0

t∫
0

E|f(t, s, ϕ0)|2ds dt < ∞ for ai, bi, i = 2, 3. Then eq. (1.2)

has a unique solution x in L2(CX).

Proof. Remember that if the functionals ai, bi, i = 1, 2, 3 satisfy the modified Lipcshitz
condition (2.10), then they are stochastically closed in the sense of the definition of stochastical
closeness from Section 1. Furthermore, the proof follows immediately by applying Proposition
2.2 and Theorem 2.1. ¤

Note that this theorem is expressed without the growth condition (1.4).
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