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Rezime: Ispituje se bliskost u (2k)-tom smislu između rešenja perturbovane stohastičke diferencijalne jednačine tipa Itoa koje zavisi od malih parametara i rešenja odgovarajuće neperturbovane jednačine, na konačnim vremenskim intervalima ili na intervalima čija dužina teži beskonačnosti kada mali parametri teže nuli.

KLJUČNE REČI: STOHASTIČKE DIFERENCIJALNE JEDNAČINE, PARAMETARSKE PERTURBACIJE, BLISKOST U (2K)-TOM SMISLU

Abstract:  We investigate the (2k)-th mean closeness between the solution of the perturbed stochastic differential equation of the Itô type  depending on small parameters and the solution of the corresponding unperturbed one, on finite time-intervals or on intervals whose length tends to infinity as small parameters tend to zero. 
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In many problems in almost all areas of science and engineering there are real phenomena depending on the effect of "white noise" random forces and on deterministic and stochastic perturbations.  Note that white noise is, at least, a tolerable abstraction and is never a completely faithful representation of a physical noise source.  Specially, during the last years stimulating research have been undertaken in the field of descriptions of real systems subjected to random excitations of a Gaussian white noise type.  Having in view that a Gaussian white noise is mathematically described as a formal derivative of a Brownian motion process, all such problems are essentially based on stochastic differential equations of the Itô type [3].

The theory of stochastic differential equations of the Itô type had a permanent development with a large number of innovations. However, the Itô calculus remains essential because several phenomena in technical, biological, social sciences, and recently in economics (see [1], [2], [5], [7], for example), can be modeled and described by this theory, which proves the flexibility of its applications. We state the following simple examples in connection with financial mathematics:

(i) (B. Oksendal, [6, 1992]) The simple population growth can be modeled by ordinary differential equation 


[image: image1.wmf],

)

0

(

,

0

     

,

0

n

n

t

n

a

dt

dn

t

t

t

=

>

=


where nt is the size of the population at time t and at is the relative rate of growth at time t. If at is not completely known, but subjected to some random noise effect, i.e.
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where rt is assumed to be non-random, and if it is not known the exact behavior of the noise term, then instead of the previous differential equation we shall consider the Itô type stochastic differential equation
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in which wt is a Brownian motion process.

(ii) (B. Oksendal, [6, 1992]) Suppose a person has an assert or resource (e.g. a house, stocks, oil, ...) that she is planning to sell. The price pt at time t of her assert on the open market subjected to "noise" forces, varies according to a stochastic differential equation of the Itô type
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where r, ( are known non--random constants. If the inflation rate is a known constant, the question is at what time should a person decide to sell in order her choice of time will turn out to be the best. 

(iii) There are a lot of evolution models which describe the behavior of stochastic interest rate rt, t ( 0, subjected to various financial influences. For example:

     The non-linear model (F. Black and P. Karasinski, [1, 1991]) 
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where (t, (t, (t, are non-random functions describing financial parameters;

     The non-linear model (L. Chen, [ 2 , 1995]), 
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where (t, (t, (t, are diffusion processes depending on different independent Brownian motion processes. 

All the previous examples are special cases of the scalar stochastic differential equation of the Itô type
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in which (wt , t ( 0) is a scalar-valued normalized Brownian motion with a natural filtration  {Ft, t ( 0} (i.e. Ft  is a smallest (-field on which all random variables ws, s ( t are Ft-measurable), the initial condition x0 is a random variable independent of wt, a(t,x) and b(t,x) are given scalar real functions satisfying
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On the basis of classical theory of stochastic differential equations of the Itô type one can prove that if the functions a(t,x) and b(t,x) satisfy the global Lipschitz condition and the usual linear growth condition on the last argument, and if 
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) for any fixed integer k, then there exists a unique solution (
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) of Eq. (1), continuous with probability one, satisfying 
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In many problems the Itô's equation depends on non-random parameters. In the basic paper [8] the following equation
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is studied, in which 
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 are small parameters from the interval (0,1). Because the solution depends on them, we adopt the shorter notational convention, introducing the superscript 
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 are given scalar real functions. In accordance with papers [4] and [8], the functions 
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are called the perturbations, while Eq. (2) is logically called the perturbed equation with respect to the unperturbed equation (1).

If Eq. (2) is not effectively solvable, then, from the theoretical point of view, and much more from the point of view of various applications, it is important to study its solution by comparing it, in some reasonable sense, with the solutions of the corresponding unperturbed equation (1).

 In paper [8] the following assumptions are introduced: There exist a non-random value 
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Let us suppose that both equations (1) and (2) have unique solutions xt and 
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 respectively, continuous with probability one and satisfying 
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and let the conditions (3) be satisfied. Moreover, if the values 
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 are close in the (2k)-th moment sense. In connection with these requirements, the name small perturbations is logically kept for the perturbations 
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In paper [8] the following estimation of the (2k)-th moment closeness for the solutions xt and 
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where 
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 and M is a generic constant. Starting from this estimation, some special types of perturbations are considered in paper [8]. In the present paper, similarly to [4], we shall observe a general case of perturbations and we shall give conditions under which these solutions are close on fixed finite intervals or on intervals whose length tends to infinity when the small parameters tend to zero.

Theorem 1. Let the coefficients of Eq. (2) be Lipschitz continuous and the conditions  (3) be satisfied and let 
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The proof follows immediately from (4) because
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where C and K are generic constants.

Therefore, for sufficiently small parameters
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 are close in the (2k)-th moment sense on a fixed finite time-interval [0,T]. But, if the time-interval is infinite, i.e. 
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Theorem 2. Let the conditions of Theorem 1 be satisfied for 
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Then, for an arbitrary number 
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where K is a generic positive constant, such that 
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Note that the proof of the last assertion gives us an important result, the rate of closeness of the solutions 
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 could be treated as small disturbances, which effect to a financial market. Therefore, under the preceding conditions for the perturbations, it is reasonable to believe that the response 
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