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Abstract

The goal of this paper is to study the (2m)-th asymptotic behavior for the family
of stochastic processes xε = (xε

t , t ∈ [t0,∞)), depending on a ”small” parameter
ε ∈ (0, 1). We consider the case when xε is the solution of an Itô’s stohastic integro-
differential equation whose coefficients are additionally perturbed. We compare the
solution xε with the solution of an appropriate unperturbed equation of the equal
type. Sufficient conditions under which these solutions are close in the (2m)-th
moment sense on intervals whose length tends to infinity are given.3

1. Introduction

In many fields of physical and engineering sciences there are large numbers of
real phenomena depending on perturbations, which are mathematically modeled
and described by generalized Itô type stochastic differential equations (for example,
see [3], [6], [16]). In the present paper we consider the problems of perturbations
for one of the important, very general class of these equations, for the stochastic
integrodifferential equation

dxt =


a1(t, xt) +

t∫

t0

a2(t, s, xs) ds +

t∫

t0

a3(t, s, xs) dws


 dt

+


b1(t, xt) +

t∫

t0

b2(t, s, xs) ds +

t∫

t0

b3(t, s, xs) dws


 dwt, t ∈ [t0, T ],

xt0 = x0 a.s.

(1.1)
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described in details in the recent work of Berger and Mizel [2] on general forms of
Ito–Volterra stochastic integrodifferential equations. Here w = (wt, t ∈ R) is an
Rk–valued normalized Brownian motion defined on a complete probability space
(Ω,F , P ), with a natural filtration {Ft, t ∈ R} of nondecreasing sub σ–algebras of
F , x0 is a random variable independent of w, xt is an Rn–valued stochastic process,
the functions

a1 : [t0, T ]×Rn → Rn, b1 : [t0, T ]×Rn → Rn ×Rk,
a2 : J ×Rn → Rn, b2 : J ×Rn → Rn ×Rk,
a3 : J ×Rn → Rn ×Rk, b3 : J ×Rn → Rn ×Rk ×Rk,

where J = { (t, s) : t0 ≤ s ≤ t ≤ T}, are assumed to be Borel measurable on their
domains.

An Rn-valued stochastic process xt is a (strong) solution of the equation (1.1) on
t ∈ [t0, T ] if:

— xt is nonanticipating for t ∈ [t0, T ];
— the processes

â1(t) = a1(t, xt), â2(t, s) = a2(t, s, xs), â3(t, s) = a3(t, s, xs),
b̂1(t) = b1(t, xt), b̂2(t, s) = b2(t, s, xs), b̂3(t, s) = b3(t, s, xs),

are such that
T∫

t0

|â1(t)|dt < ∞ a.s.,
T∫

t0

|b̂1(t)|2dt < ∞ a.s.,
T∫

t0

t∫
t0

|â2(t, s)|dsdt < ∞ a.s.,

and â3, b̂2, b̂3 satisfy
T∫

t0

t∫
t0

|f(t, s)|2dsdt < ∞ a.s.;

— xt0 = x0 a.s.;
— the equation (1.1) holds for each t ∈ [t0, T ].
There is a number of papers in which various, essentially diferent sufficient condi-

tions of the existence and uniqueness of a solution of the equation (1.1) are considered
(see, [2], [8], [16], [17], for example). In fact, in the paper [2], following the classical
theory of stochastic differential equations of the Itô type (see, [4], [5], [12], [13], for
example), the basic existence and uniqueness theorem is proved: If the functions
ai, bi, i = 1, 2, 3, satisfy the global Lipschitz condition and the usual linear growth
condition on the last argument, i.e. if there exists a constant L > 0 such that

|a2(t, s, x)− a2(t, s, y)| < L|x− y|, |a2(t, s, x)| ≤ L (1 + |x|) , (1.2)

for all (t, s) ∈ J , x, y ∈ Rn, and similarly for the other functions, and if E|x0|2 < ∞,
then there exists a unique a.s. continuous strong solution xt, t ∈ [t0, T ], of the
equation (1.1), satisfying E{supt∈[t0,T ] |xt|2} < ∞. Moreover, following the proce-
dure in the papers [13] and [15] completely, it can be proved that if E|x0|2m < ∞
for any fixed number m ∈ N , then E{supt∈[t0,T ] |xt|2m} < ∞.

As we saw above, our main purpose in the present paper is to study the stochastic
integrodifferential equation (1.1) with ”small” perturbations, by comparing its solu-
tion with the solution of the corresponding unperturbed equation of the equal type.
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More precisely, we shall give conditions ensuring the closeness in (2m)-th moment
sense for these solutions on fixed finite intervals or on intervals whose length goes
to infinity. Note that the form of perturations is motivated by the one from the pa-
per [7] and, also, from the basic paper [19], but the treatment used in our analysis
is completely different from the one used in the mentioned papers. Moreover, we
generalize the results of the paper [19] which could be treated here as illustrative ex-
amples. Remember, also, that the problems treating stochastic perturbed equations
have been studied by several authors in the past years, in the papers and books [9],
[10], [11], [14], [18], [20], for example.

In the sequel we shall apply the following version of the Gronwall–Bellman in-
equality [1, p. 12]: Let u(t) be a continuous function in [t0, T ], b(t) a nonne-
gative continuous function in [t0, T ], k(t, s) a nonnegative continuous function for
t0 ≤ s ≤ t ≤ T and

u(t) ≤ a(t) + b(t)
∫ t

t0

k(t, s)u(s) ds, t ∈ [t0, T ]. (1.3)

Then

u(t) ≤ A(t)e
B(t)

∫ t

t0
K(t,s) ds

, t ∈ [t0, T ],

where A(t) = sup
s∈[t0,t]

a(s), B(t) = sup
s∈[t0,t]

b(s), K(t, s) = sup
r∈[s,t]

k(r, s).

2. Main results

Along with the equation (1.1) in integral form, i.e.

xt = x0 +
∫ t

t0


a1(s, xs) +

s∫

t0

a2(s, r, xr) dr +

s∫

t0

a3(s, r, xr) dwr


 ds

(2.1)

+
∫ t

t0


b1(s, xs) +

s∫

t0

b2(s, r, xr) dr +

s∫

t0

b3(s, r, xr) dwr


 dws,

we estabilish the following equation

xε
t = xε

0 +
∫ t

t0


ã1(s, xε

s, ε) +

s∫

t0

ã2(s, r, xε
r, ε) dr +

s∫

t0

ã3(s, r, xε
r, ε) dwr


 ds

(2.2)

+
∫ t

t0


b̃1(s, xε

s, ε) +

s∫

t0

b̃2(s, r, xε
r, ε) dr +

s∫

t0

b̃3(s, r, xε
r, ε) dwr


 dws,
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where t ∈ [t0, T ], ε is a small parameter from the interval (0, 1), the initial condition
xε

0 and the functions ãi, b̃i, i = 1, 2, 3 are defined as for the equation (1.1), and w is
the same Brownian motion.

Inspired by the paper [19], we suppose that there exist the nonrandom functions
αi(·), βi(·), i = 1, 2, 3, defined as ai, bi, i = 1, 2, 3, respectively, and depending on the
small parameter ε, such that for (t, s) ∈ J , x ∈ Rn

ã1(t, x, ε) = a1(t, x) + α1(t, x, ε),

b̃1(t, x, ε) = b1(t, x) + β1(t, x, ε),

ãi(t, s, x, ε) = ai(t, s, x) + αi(t, s, x, ε), i = 2, 3,

b̃i(t, s, x, ε) = bi(t, s, x) + βi(t, s, x, ε), i = 2, 3.

The terms αi and βi are called the perturbations of the coefficients ai and bi, respec-
tively. Because of that, the equation (2.2) is naturaly called the perturbed equation,
while the name the unperturbed equation is kept for (2.1). Likewise, we introduce
the following necessary assumptions:

Let there exist a natural number m, the nonrandom value δ0(ε) and the onedi-
mensional nonnegative bounded functions δi(·), γi(·), i = 1, 2, 3, defined on J and
depending on ε, such that

E|x0|2m < ∞, E|xε
0|2m < ∞, E|x0 − xε

0|2m ≤ δ0(ε), (2.3)

sup
x∈Rn

|α1(t, x, ε)| ≤ δ1(t, ε), sup
x∈Rn

|β1(t, x, ε)| ≤ γ1(t, ε),

(2.4)

sup
x∈Rn

|αi(t, s, x, ε)| ≤ δi(t, s, ε), sup
x∈Rn

|βi(t, s, x, ε)| ≤ γi(t, s, ε), i = 2, 3.

In view of our previous discussion, if we suppose that they are small for small
ε, then we can impose conditions under which the solution xε and x are close in
(2m)-th moment sense.

In the sequel we suppose without emphasizing that the all random and nonrandom
integrals employed further are well defined, as well as that à priori there exist the
unique solutions of the equations (2.1) and (2.2), satisfying E{supt∈[t0,T ] |xt|2m} <

∞ and E{supt∈[t0,T ] |xε
t |2m} < ∞ (under the general conditions of the existence and

uniqueness theorem from [2], for example). Furthermore, we shall emphasize only
the conditions immediately used in our consideration.

First we give the following global estimation for the (2m)-th moment closeness of
the solutions x and xε, which is important for the statements in our main results.

Proposition 2.1. Let xt and xε
t be the solutions of the equations (2.1) and (2.2)

respectively and let the conditions (1.2), (2.3) and (2.4) be satisfied on the finite
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interval [t0, T ]. Then

E|xε
t − xt|2m ≤ a(t, ε) eξ(t−t0), t ∈ [t0, T ], (2.5)

where

a(t, ε) = Aδ0(ε) + A(t− t0)m−1

{∫ t

t0

[
(t− t0)mδ2m

1 (s, ε) + Bγ2m
1 (s, ε)

]
ds

+
∫ t

t0

(s− t0)2m−1

∫ s

t0

[
(t− t0)mδ2m

2 (s, ε) + Bγ2m
2 (s, ε)

]
dr ds (2.6)

+ B

∫ t

t0

(s− t0)m−1

∫ s

t0

[
(t− t0)mδ2m

3 (s, ε) + Bγ2m
3 (s, ε)

]
dr ds

}
,

ξ(t) = AL2m tm
[

t3m

2m + 1
+

B(3m + 2) t2m

(m + 1)(2m + 1)
+

(
1 +

B2

m + 1

)
tm + B

]
,

(2.7)

and A = 132m−1, B = [m(2m− 1)]m, L is the Lipschitz constant from (1.2).

Proof. Denote
zε
t = xε

t − xt, ∆ε
t = E|zε

t |2m.

By subtracting the equations (2.1) and (2.2) and by applying the elementary in-

equality
( ∑n

i=1 ai

)s

≤ ns−1
∑n

i=1 as
i , ai ≥ 0, s ∈ N , we obtain, for every t ∈ [t0, T ],

E|zε
t |2m ≤ 132m−1

{
E|zε

t0 |2m + E
( ∫ t

t0

[a1(s, xε
s)− a1(s, xs)] ds

)2m

+ E
( ∫ t

t0

α1(s, xε
s, ε) ds

)2m

+ E
( ∫ t

t0

∫ s

t0

[a2(s, r, xε
r)− a2(s, r, xr)] dr ds

)2m

+ E
( ∫ t

t0

∫ s

t0

α2(s, r, xε
r, ε) dr ds

)2m

+ E
( ∫ t

t0

∫ s

t0

[a3(s, r, xε
r)− a3(s, r, xr)] dwr ds

)2m

+ E
( ∫ t

t0

∫ s

t0

α3(s, r, xε
r, ε) dwr ds

)2m
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+ E
( ∫ t

t0

[b1(s, xε
s)− b1(s, xs)] dws

)2m

+ E
( ∫ t

t0

β1(s, xε
s, ε) dws

)2m

+ E
( ∫ t

t0

∫ s

t0

[b2(s, r, xε
r)− b2(s, r, xr)] dr dws

)2m

+ E
( ∫ t

t0

∫ s

t0

β2(s, r, xε
r, ε) dr dws

)2m

+ E
( ∫ t

t0

∫ s

t0

[b3(s, r, xε
r)− b3(s, r, xr)] dwr dws

)2m

+ E
( ∫ t

t0

∫ s

t0

β3(s, r, xε
r, ε) dwr dws

)2m
}

.

In order to estimate these integrals, we shall apply the usual stochastic integral
isometry: the Lipschitz condition (1.2) for the functions ai, bi, the relations (2.3)
and (2.4), the partial integration, Hölder inequality for p = 2m, 1

p + 1
q = 1 and the

well–known integral formula for Itô integrals (see [5], [12], [13]):

E
( ∫ t

t0

f(s) dws

)2m

≤ [m(2m− 1)]m(t− t0)m−1

∫ t

t0

Ef2m(s) ds

for any measurable Ft–adapted process f(t) satisfying
∫ t

t0
Ef2m(s) ds < ∞. Conse-

quently, taking B = [m(2m− 1)]m we find

E
( ∫ t

t0

[a1(s, xε
s)− a1(s, xs)] ds

)2m

≤ (t− t0)2m−1

∫ t

t0

E|a1(s, xε
s)− a1(s, xs)|2m ds

≤ L2m(t− t0)2m−1

∫ t

t0

∆ε
s ds,

E
( ∫ t

t0

α1(s, xε
s, ε) ds

)2m

≤ (t− t0)2m−1

∫ t

t0

δ2m
1 (s, ε) ds,

E
( ∫ t

t0

∫ s

t0

[a2(s, r, xε
r)− a2(s, r, xr)] dr ds

)2m

≤ L2m(t− t0)2m−1

∫ t

t0

(s− t0)2m−1

∫ s

t0

∆ε
r dr ds
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=
L2m

2m
(t− t0)2m−1

∫ t

t0

[
(t− t0)2m − (s− t0)2m

]
∆ε

s ds,

E
( ∫ t

t0

∫ s

t0

[α2(s, r, xε
r, ε) dr ds

)2m

≤ (t− t0)2m−1

∫ t

t0

(s− t0)2m−1

∫ s

t0

δ2m
2 (s, r, ε) dr ds

E
( ∫ t

t0

∫ s

t0

[a3(s, r, xε
r)− a3(s, r, xr)] dwr ds

)2m

≤ BL2m(t− t0)2m−1

∫ t

t0

(s− t0)m−1

∫ s

t0

∆ε
r dr ds

=
BL2m

m
(t− t0)2m−1

∫ t

t0

[
(t− t0)m − (s− t0)m

]
∆ε

s ds,

E
( ∫ t

t0

∫ s

t0

[α3(s, r, xε
r, ε) dwr ds

)2m

≤ B(t− t0)2m−1

∫ t

t0

(s− t0)m−1

∫ s

t0

δ2m
3 (s, r, ε) dr ds

E
( ∫ t

t0

[b1(s, xε
s)− b1(s, xs)] dws

)2m

≤ BL2m(t− t0)m−1

∫ t

t0

∆ε
s ds,

E
( ∫ t

t0

β1(s, xε
s, ε) dws

)2m

≤ B(t− t0)m−1

∫ t

t0

γ2m
1 (s, ε) ds,

E
( ∫ t

t0

∫ s

t0

[b2(s, r, xε
r)− b2(s, r, xr)] dr dws

)2m

≤ BL2m

2m
(t− t0)m−1

∫ t

t0

[
(t− t0)2m − (s− t0)2m

]
∆ε

s ds,

E
( ∫ t

t0

∫ s

t0

[β2(s, r, xε
r, ε) dr dws

)2m

≤ B(t− t0)m−1

∫ t

t0

(s− t0)2m−1

∫ s

t0

γ2m
2 (s, r, ε) dr ds,

E
( ∫ t

t0

∫ s

t0

[b3(s, r, xε
r)− b3(s, r, xr)] dwr dws

)2m

≤ B2L2m

m
(t− t0)m−1

∫ t

t0

[
(t− t0)m − (s− t0)m

]
∆ε

s ds,
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E
( ∫ t

t0

∫ s

t0

[β3(s, r, xε
r, ε) dwr dws

)2m

≤ B2(t− t0)m−1

∫ t

t0

(s− t0)m−1

∫ s

t0

γ2m
3 (s, r, ε) dr ds.

Finally, we come to the integral inequality of the type (1.3),

∆ε
t ≤ a(t, ε) + b(t)

∫ t

t0

k(t, s)∆ε
s ds, t ∈ [t0, T ], (2.8)

where

a(t, ε) = Aδ0(ε) + A(t− t0)m−1

{∫ t

t0

[
(t− t0)mδ2m

1 (s, ε) + Bγ2m
1 (s, ε)

]
ds

+
∫ t

t0

(s− t0)2m−1

∫ s

t0

[
(t− t0)mδ2m

2 (s, ε) + Bγ2m
2 (s, ε)

]
dr ds

+ B

∫ t

t0

(s− t0)m−1

∫ s

t0

[
(t− t0)mδ2m

3 (s, ε) + Bγ2m
3 (s, ε)

]
dr ds

}
,

b(t) = AL2m(t− t0)m−1[B + (t− t0)m],

k(t, s) = 1 +
1

2m
[(t− t0)2m − (s− t0)2m] +

B

m
[(t− t0)m − (s− t0)m],

and A = 132m−1. Since the functions a(t, ε) and b(t) are increasing, k(t, s) is in-
creasing with respect to the first argument and

∫ t

t0

k(t, s) ds = (t− t0)
[
1 +

1
2m + 1

(t− t0)2m +
B

m + 1
(t− t0)m

]
,

we easily come to the estimation (2.5) by applying the previous cited version of
Gronwall–Bellman inequality to the inequality (2.8). ¤

If we start from the global estimation (2.5), taking into consideration that the size
of the perturbations is limited by δ0(·), δi(·), γi(·) and if we require that δ0(·) →
0, δi(·) → 0, γi(·) → 0 as ε → 0, it is reasonable to expect that, under some
conditions, supt∈[t0,T ] E|xε

t − xt|2m → 0 as ε → 0.

Theorem 2.1. Let the conditions of Proposition 2.1 be satisfied and let δ0(·), δi(·),
γi(·), i = 1, 2, 3, tend to zero as ε tends to zero, for every (t, s) ∈ J . Then

sup
t∈[t0,T ]

E|xε
t − xt|2m → 0 as ε → 0.
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Proof. Denote

δ1(ε) = sup
t∈[t0,T ]

δ1(t, ε), δi(ε) = sup
(t,s)∈J

δi(t, s, ε), i = 2, 3

γ1(ε) = sup
t∈[t0,T ]

γ1(t, ε), γi(ε) = sup
(t,s)∈J

γi(t, s, ε), i = 2, 3.
(2.9)

and

φ(ε) = max
{

δ0(ε), δ
2m

1 (ε), δ
2m

2 (ε), δ
2m

3 (ε), γ2m
1 (ε), γ2m

2 (ε), γ2m
3 (ε)

}
. (2.10)

Clearly, φ(ε) → 0 as ε → 0. From (2.6) we find

a(t, ε) ≤ φ(ε)P4((t− t0)m), t ∈ [t0, T ],

where P4(v), v ≥ 0, is the corresponding polynomial of the degree 4. Now, from
(2.5) it follows

E|xε
t − xt|2m ≤ φ(ε)P4((t− t0)m) eξ(t−t0), t ∈ [t0, T ], (2.11)

where ξ(t− t0) is defined as in (2.7). Because T is finite, then there exists a generic
constant C > 0, not depending on ε, such that

E|xε
t − xt|2m ≤ C φ(ε), t ∈ [t0, T ].

Therefore, supt∈[t0,T ] E|xε
t − xt|2m → 0 as ε → 0. ¤

Remark 1. The initial condition xε
0 and the perturbations αi(·), βi(·), i = 1, 2, 3, in

the perturbed equation (2.2) could depend on different small parameters ε0, εi, µi,
i = 1, 2, 3, respectively. Because the solution depends on them, we adopt the shorter
notational convenion, introducing the superscript ε in xε

t and emphasizing that ε
also depends on them. Clearly, the functions δ0(·), δi(·), γi(·), i = 1, 2, 3, from
(2.3) and (2.4) also depend on them. If they are nondecreasing with respect to
the small parameters, then Proposition 2.1 and Theorem 2.1 are valid with ε =
max{ε0, ε1, ε2, ε3, µ1, µ2, µ3}.

Note that all the previous considerations refer to any fixed finite time-interval.
The logical question is: Are the analogous conclusions valid for the infinite time-
interval? The following theorem, as the main result of this paper, shows that
supt E|xε

t − xt|2m → 0 as ε → 0 on intervals whose length goes to infinity. Likewise,
note that the proof is partially similar to the appropriate proof in the paper [7].
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Theorem 2.2. Let the conditions of Theorem 2.1 be satisfied for t ≥ t0. Then,
for an arbitrary number r ∈ (0, 1) and ε sufficiently small, there exists a number
T (ε) > 0, where

T (ε) = M
[(− r ln φ(ε)

)1/4 −K
]1/m

, (2.12)

φ(ε) is given by (2.10), M and K are some generic positive constants, such that

sup
t∈[t0,t0+T (ε)]

E|xε
t − xt|2m → 0 as ε → 0.

Proof. Since the time-interval is infinite, Theorem 2.1 is generally not valid.
Because of that we shall take T = t0 +T (ε) and effectively determine T (ε) such that
supt∈[t0,T (ε)] E|xε

t − xt|2m → 0 as ε → 0.
From (2.11) it follows

E|xε
t − xt|2m ≤ φ(ε)P4

(
Tm(ε)

)
eξ(T (ε)), t ∈ [t0, T (ε)]. (2.13)

Since ε → 0 implies φ(ε) → 0, we can accept that there exists a constant ε0,
0 < ε0 < 1, such that φ(ε) < 1 for ε ∈ (0, ε0). Because we require that the limit
on the right side of the inequality (2.13) tends to zero as ε tends to zero, we shall
determine T (ε) such that

ξ(T (ε)) ≤ −r ln φ(ε)

for an arbitrary number r ∈ (0, 1) and for ε ∈ (0, ε0).

By applying the elementary inequality a4
1 +4a3

1a2 +6a2
1a

2
3 +4a1a

3
4 ≤

(∑4
i=1 ai

)4

,
ai ≥ 0, to the function ξ(t− t0) defined by (2.7), taking

a1 =
( AL2m

2m + 1

)1/4

(t− t0)m, a2 =
B (3m + 2)
4 (m + 1)

·
( AL2m

2m + 1

)1/4

,

a3 =
[
AL2m(2m + 1)

]1/4 ·
[1
6

(
1 +

B2

m + 1

)]1/2

,

a4 =
(B

4

)1/3

· (2m + 1)1/12 · (AL2m)1/4,

we obtain

ξ(t− t0) ≤ ξ(T (ε)) ≤
[( AL2m

2m + 1

)1/4

Tm(ε) + K

]4

, t ∈ [t0, T (ε)],
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where K = a2 + a3 + a4. Now, for an arbitrary number r ∈ (0, 1) and ε sufficiently
small (ε < ε0), such that −r ln φ(ε) ≥ K4, providing

[( AL2m

2m + 1

)1/4

Tm(ε) + K

]4

= −r ln φ(ε),

we easily find the maximal number T (ε) in the form (2.12), where M =
(

2m+1
AL2m

)1/4m.
Clearly, T (ε) →∞ as ε → 0.
Finally, from (2.12), for every t ∈ [t0, T (ε)], it follows

E|xε
t − xt|2m ≤ (

φ(ε)
)1−r

P4

(
M

[(− r ln φ(ε)
)1/4 −K

]1/m
)
→ 0 as ε → 0,

and, therefore, supt∈[t0,t0+T (ε)] E|xε
t − xt|2m → 0 as ε → 0. Thus the proof is

complete. ¤

Example. Let us indicate briefly how to apply the foregoing results to estimate
the (2m)-th mean closeness for the solutions of any perturbed equation and the
corresponding unperturbed equation. For example, motivated by the choice of per-
turbations in the paper [19], let us consider the scalar perturbed equation

xε
t = η + ε0 +

∫ t

0

[
as + bs xε

s +
ε1

1 + |xε
s|

+
∫ s

0

(
ε3 + e−(r+1)/ε3

)
sin xε

r dwr

]
ds

+
∫ t

0

[
cs + µ1 +

∫ s

0

sin
µ3

1 + s + r + |xε
r|

dwr

]
dws, t ≥ 0,

where at, bt, ct, t ≥ 0, are nonrandom, measurable and bounded functions and η =
const> 0 a.s., while

xt = η +
∫ t

0

(as + bs xε
s) ds +

∫ t

0

cs dws, t ≥ 0,

is the corresponding unperturbed linear equation, which is effectively solvable and
which solution is the gaussian and markovian process (see [4], [6], [13], for example).
Note that the perturbations from the perturbed equation satisfy the conditions (2.1),
(2.3) and (2.4). The conditions of Theorem 2.1 and of Theorem 2.2 are also satisfied
and, therefore, we can determine intervals [0, T (ε)] whose length tends to infinity as
ε → 0 and on which supt∈[0,T (ε)] E|xε

t − xt|2m → 0 as ε → 0. From (2.9) and (2.10)
it follows

φ(ε) = max
{

ε2m,
(
ε + e−1/ε

)2m

, (sin ε)2m

}
=

(
ε + e−1/ε

)2m

.
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Since there exists ε0 ∈ (0, 1), such that ε + e−1/ε < 1 for all ε ∈ (0, ε0), then, for an
arbitrary number r ∈ (0, 1), from (2.12) we observe

T (ε) = M

[(
−2mr ln

(
ε + e−1/ε

))1/4

−K

]1/m

,

where the constants M and K are defined as above and A = 62m−1.
Remark 2. By applying the previously used stochastic integral isometry, including
the Burkholder–Davis–Gundy inequality (see [5], [13], [15], for example) one can
estimate ∆

ε
(T ) = E{supt∈[t0,T ] |xε

t − xt|2m} as a measure of the closeness between
the solutions xe and x. Analogously to the procedure exposed in the present paper,
one can find conditions under which ∆

ε
(T ) → 0 as ε → 0 on finite intervals or on

intervals whose length goes to infinity.
Remark 3. If the time interval is infinite, the results of this paper could be imme-
diately used to investigate the asymptotic stability in (2m)-th moment sense for the
solutions of the perturbed equations, by studying the same asymptotic stability for
the solution of the corresponding unperturbed equation.



13

References

[1] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic
Publishers, Dordrecht, Netherlands, 1992.

[2] M.A. Berger, V.J. Mizel, Volterra equations with Ito integrals I, J. of Integral
Equations, 2 (1980), 187–245.

[3] M.A. Berger, V.J. Mizel,Volterra equations with Ito integrals II, J. of Integral
Equations, 4 (1980), 319–337.

[4] T. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, New
York (1988).

[5] I.I. Gihman, A.V. Skorohod, Stochastic Differential Equations and Their Appli-
cations, Naukova Dumka, Kiev, 1982 (In Russian).

[6] A.R. Ibrahim, Parametric Random Vibration, Wiley, New York, 1985.
[7] Sv. Janković, M. Jovanović, Perturbed stochastic hereditary differential equations,

(to appear)
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