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Miljana Jovanović
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Abstract. In this paper we investigate the asymptotic behavior in the (2k)–th moment sense
of the non–linear oscillator amplitude subjected to small perturbations and random excitations
of a Gaussian white noise type. Since this problem is connected with stochastic differential
equation of the Ito type, the present paper deals with the asymptotis behavior of the solution of
the Ito’s differential equation with small perturbations, by comparing it with the solution of the
corresponding unperturbed equation. Precisely, we give conditions under which these solutions
are close in the (2k)–th moment sense on intervals whose length tends to infinity.

1. INTRODUCTION

Non–linear differential equations subjested to deterministic and random excitations have been
extensively investigated both theoretically and experimentally over a long period of time. In
mechanics, and much more in engineering practice, an important role is played by non–linear
differential equation of the form

ÿ + g(y) ẏ + h(t, y) y = 0,

which repersents mathematical models of elastic systems motion with one degree of freedom,
or discredization of the dynamic model of an elastic body in the basic form of the dynamic
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equilibrium. The researcher’s interest is concentrated on exploring the bifurcational behavior of
the solution and on conditions of stability or unstability of various elastic equilibrium forms under
deterministic and stochastic influences. Specially, during the last years stimulating research have
been undertaken in the field of descriptions of amplitudes of non–linear oscillators subjected to
random excitations of a Gaussian white noise type. Many authors, for instance Ariaratnam
[****], Ibrahim [****], Kozin [*****], Kushner [****], Caughey [****], Weidenhammer [*****]
and others, have studied various problems of motion of elastic oscillator systems under random
excitations of a Gaussian white noise type, which is mathematically descrbed as a Gaussian
stationary wide–band random process of small intensity and correlation time, with matematical
expectation equal to zero. Note that white noise is, at least, a tolerable abstraction and is never
a completely faithful representation of a physical noise source.

The stochastic averiging principle, introduced by Khas’minskii, encouraged several rechearch-
ers to investigate the random behavior of dynamic systems under random parametric excitations.
However, they have been used a number of techniques, basically connected with the stochastic
averiging principle, for instance, the Markovian method based on the Kolmogorov– Fokker–
Planck equation, the Gaussian moment function methods, the spatial correlation method, and
others. Having in view that a Gaussian white noise is an abstraction and not a physical process,
at least mathematically described as a formal derivative of a Brownian motion process, all the
previously cited methods are essentially based on stochastic differential equations of the Itô type.

In the present paper we consider the stohastic differential equation of the Itô type with
small perturbations, by comparing its solution, in the (2k)-th moment sense, with the solution
of a simpler unperturbed equation of the equal type. Note that the form of perturbations
is motivated by the one from the paper [Stoj****]. We generalize the result of the paper
[Stoj****], which could be treated here as illustrative examples. The similar problems are also
studied in [Jank****, Jank****]. Remember that the problems treating stochastic perturbed
equations have been studied by several authors in the past years, for example, in the papers
and books [Kabanov****], [Xasmin****], [Lipc.Sirj****], [Stoj.konf****], [Ibrahim****], [neko
iz Ibrahima****], [Arnold****] and, clearly, in the previously cited works.

Our paper is organized as follows: In the next section, starting from the main result of the
paper [Stoj****], from the global estimetion for the (2k)-th moment closeness of the solution
of the perturbed and unperturbed equation on finite fixed time–interval, we give conditions
ensuring the closeness in the (2k)-th moment sense on intervals whose length tends to infinity as
small perturbations tend to zero. In Section 3 we illustrate the preceding results on the example
of the non–linearr oscillator subjected to parametric and random excitations of a Gaussian
white noise type. We give some useful conclusions and we point to possible applications of the
preceding considerations.

Finally, let us suppose that all random variable and processes considered here are given on
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a complete probability space (Ω,F , P ). We should mention that we shall restrict ourselves to
scalar–valued processes in this paper. For applications, extension to vector–valued process is of
great importance and it is not difficult in itself, but is rather complicated in detail and involves
complex notations.

2. FORMULATION OF THE PROBLEM AND MAIN RESULTS

We shall consider the following scalar stochastic differential equation of the Itô type

dxt = a(t, xt) dt + b(t, xt) dwt, t ∈ [0, T ], xo = η,

or, in equivalent integral form,

xt = η +
∫ t

0

a(s, xs) ds +
∫ t

0

b(s, xs) dws, t ∈ [0, T ], (2.1)

in which w = (wt, t ≥ 0) is a scalar–valued normalized Brownian motion with a natural filtration
{Ft, t ≥ 0} (i.e. Ft is a smallest σ-field on which all random variables ws, s ≤ t are Ft–
measurable), the initial condition η is a random variable independent of w, a(t, x) and b(t, x)
are given scalar real functions satisfying

∫ T

0
|a(t, x)| dt < ∞,

∫ T

0
|b(t, x)|2 dt < ∞ (under these

conditions Lebesgue and Itô integrals in (2.1) are well defined), and x = (xt, t ∈ [0, T ]) is a
scalar stochastic process adapted to {Ft, t ≥ 0}.

It is well known that there is a number of papers and books in which various, essentially difer-
ent sufficient conditions of the existence and uniqueness of a solution of Eq. (2.1) are given (see,
for example, [Arnold****], [Ikeda, wat****], [LipcerSir****], [Skor, Gihm****], [Matinst****].
In fact, from the classical theory of stochastic differential equations of the Itô type, one can
prove that if the functions a(t, x) and b(t, x) satisfy the global Lipschitz condition and the usual
linear growth condition on the last argument, i.e. if there exists a constant L > 0 such that

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| < L|x− y|, |a(t, x)|2 + |b(t, x)|2 ≤ L
(
1 + |x|2) , (2.2)

for all x, y ∈ R, t ∈ [0, T ] and if E|η|2 < ∞ (E|η|2 is mathematical expectation of |η|2), then
there exists a unique solution x = (xt, t ∈ [t0, T ]) of Eq. (2.1), continuous with probability one,
satisfying E{supt∈[t0,T ] |xt|2} < ∞. Moreover, if E|η|2k < ∞ for any fixed integer k ∈ N , then
E{supt∈[t0,T ] |xt|2k} < ∞.

Together with Eq. (2.1) we consider the following equation of the equal type, depending on
parameters,

xε
t = ηε0 +

∫ t

0

[a(s, xε
s) + α(s, xε

s, ε1)] ds +
∫ t

0

[b(s, xε
s) + β(s, xε

s, ε2)] dws, t ∈ [0, T ], (2.3)
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in which ε0, ε1, ε2 are small parameters from the interval (0, 1). Because the solution depends
on them, we adopt the shorter notational convenion, introducing the superscript ε in xε

t and
emphasizing that ε also depends on them. The initial value ηε0 , satisfying E|ηε0 |2k < ∞, is
independent on the same Brownian motion w, and α(t, x, ε1) and β(t, x, ε2) are given scalar real
functions. In accordance with the paper [Stoj***], the functions α(t, x, ε1) and β(t, x, ε2) are
called the perturbations, while Eq. (2.3) is naturally called the perturbed equation with respect
to the unperturbed equation (2.1).

We suppose that there exist a non–random value δ0(ε) and bounded functions δ1(t, ε1) and
δ2(t, ε2), such that

E|ηε0 − η|2k ≤ δ0(ε0), (2.4)

sup
x∈R

|α(t, x, ε1)| ≤ δ1(t, ε1), sup
x∈R

|β1(t, x, ε2)| ≤ δ2(t, ε2). (2.5)

In view of our previous discussion, if the conditions (2.2), (2.4) and (2.5) are satisfied, then
both equations (2.1) and (2.3) have unique solutions xt and xε

t , respectively, continuous with
probability one and satisfying supt∈[0,T ] E|xt|2k < ∞, supt∈[0,T ] E|xε

t |2k < ∞. Moreover, if
the values δ(ε0), δ1(t, ε1), δ2(t, ε2) are small for small ε0, ε1, ε2, then we could expect that the
solutions xt and xε

t are close in (2k)–th moment sense. In connection with these requirements,
the name small perturbations is logically kept for the perturbations α(t, x, ε1) and β(t, x, ε2).

In the paper [Stoj****] the following estimation of the (2k)–th moment closeness for the
solutions xt and xε

t is obtained: for all t ∈ [0, T ],

E|xε
t − xt|2k ≤

(
δ
1/k
0 (ε0) · exp

{
Mt + 2

∫ t

0

δ1(s, ε1) ds
}

(2.6)

+
∫ t

0

[
2d1(s, ε1) + (2k − 1)δ2

2(s, ε2)
] · exp

{
Mt + 2

∫ t

s

δ1(u, ε1) du
}

ds

)k

,

where M = 2L+2(2k−1)L2. Starting from this estimation, some special types of perturbations
are considered in the paper [Stoj***]. In the presen paper we shall observe a general case of
perturbations and we shall give conditions under which these solutions are close on fixed finite
intervals or on intervals whose length tends to infinity when the small parameters tend to zero.

First, following partially the ideas of the paper [Publ****], taking into consideration that
the size of the perturbations is limited in the sense (2.4) and (2.5), we shall require that
δ0(ε0), δ1(t, ε1) and δ2(t, ε2) monotony tend to zero as small parameters tend to zero, uniformly
in [0, T ].

Let us denote
δ1(ε1) = sup

t∈[t0,T ]

δ1(t, ε1), δ2(ε2) = sup
t∈[0,T ]

δ2(t, ε2)
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and let us define
φ(ε) = max

{
δ
1/k
0 (ε), δ1(ε), δ2

2
(ε)

}
,

where ε = max{ε0, ε1, ε2}. Obviously, φ(ε) → 0 as ε → 0.
Now, from (2.6) it is easy to obtain

E|xε
t − xt|2k ≤ φk(ε)

(
e(M+2ρ)t +

2k + 1
M + 2ρ

(
e(M+2ρ)t − 1

))k

, t ∈ [0, T ].

where ρ is a constant such that δ1(ε) < ρ for ε ∈ (0, 1). If we take C =
(
1 + 2k+1

M+2ρ

)k

, we find

E|xε
t − xt|2k ≤ C · φk(ε) · ek(M+2ρ)t, t ∈ [0, T ].

If T > 0 is a fixed finite number, it follows immediately that

sup
t∈[0,T ]

E|xε
t − xt|2k ≤ C · φk(ε) · ek(M+2ρ)T → 0 as ε → 0. (2.7)

Therefore, for enough small parameters ε0, ε1, ε2, the solutions xε
t and xt are close in (2k)–

th moment sense on a fixed finite time–interval [0, T ]. But, if the time–interval is finite, i.e.
T = ∞, then the previous assertion is generally not valid. Because of that, similarly to the
paper [Publ****], our intention is to construct finite time–intervals which depend on ε and whose
length go to infinity as ε goes to zero, such that the solutions xε

t and xt are close in the (2k)–th
moment sense on these intervals. Remember that in the paper [Stoj****] the construstion of
such intervals is given only for special classes of perturbations.

Let us take T = T (ε) and determine T (ε) such that supt∈[0,T (ε)] E|xε
t − xt|2k → 0 as ε → 0.

From (2.7) we find
sup

t∈[0,T (ε)]

E|xε
t − xt|2k ≤ C · φk(ε) · ek(M+2ρ)T (ε) . (2.8)

Obviously, we shall claim that the right hand side of this inequality tends to zero as ε tends to
zero. Since φ(ε) → 0 as ε → 0, then there exists ε ∈ (0, 1) such that φ(ε) < 1 for ε < ε. Now we
easily find T (ε) by taking (M + 2ρ)T (ε) = −r ln φ(ε) for any number r ∈ (0, 1) and for ε < ε.
Thus,

T (ε) = − r

M + 2ρ
ln φ(ε) (2.9)

and, clearly, T (ε) →∞ as ε → 0. It is easy now to conclude that

sup
t∈[0,T (ε)]

E|xε
t − xt|2k ≤ C · (φ(ε)

)k(1−r) → 0 as ε → 0. (2.10)



6

Note that the preceding relation gives us an important result, the rate of closeness of the
solutions xε

t and xt for a fixed ε. Namely, for a given small value θ > 0, from the relation
C

(
φ(ε)

)k(1−r)
< θ we can determine a limit for φ(ε) as the size of the small perturbations,

φ(ε) < (θ/C)1/k(1−r)

and, after that, T (ε) from (2.9), such that supt∈[0,T (ε)] E|xε
t − xt|2k < θ.

Remember, also, that we have estimated only even moments of |xε
t−xt|, while odd ones could

be estimated by using the elementary property of mathematical expectation:
(
E|X|)2 ≤ E|X|2

for any random variable X. From that,

sup
t∈[0,T (ε)]

E|xε
t − xt|k ≤ sup

t∈[0,T (ε)]

(
E|xε

t − xt|2k
)1/2 ≤ C1/2 · (φ(ε)

)k(1−r)/2
.

In connection with previous discussion, it is clear that the method exposed here could be
used to study stability properties in (k)–th moment sense for the solution of the perturbed
equation, by studying stability properties in the same sense for the solution of the corresponding
unperturbed equation, what will be illustrated in the next section.

3. (2k)-TH MEAN BEHAVIOR OF NON–LINEAR OSCILLATOR AMPLITUDE
SUBJECTED TO SMALL PARAMETRIC PERTURBATIONS

In this section we shall apply the previous results to describe the behavior of any non–linear
oscillator under parametric and random excitations, by comparing its amplitude, in (2k)–th
moment sense, with the one of the corresponding linear oscillator. Precisely, we consider the non–
linear oscillator motion, which is mathematically modeled with the following random differential
equation

ÿ + (α + βy2) ẏ +
(
ω2

0 + γy2 + f(t, ω)
)
y = 0, (3.1)

earlier studied in [Ariarat****1980]. Here f(t, ω) is a Gaussian stationary wide–band random
process of small intensity and correlation time, with mathematical expectation equal to zero,
which is treated as a Gaussian white noise excitation in mechanics and in engineering practice;
α, β and γ are linear and non–linear damping factors, i.e. positive constants small comparing
to one and of the same intensity order as the spectral density S(2ω0) of the Gaussian random
process; ω0 is an natural frequency of the unperturbed system oscillation. Obviously, the special
problem mainly arize in the specification of the infinitesimal character of the parameters involved
in (3.1).

It is well known that Eq. (3.1) can be transformed in the following way (see, for instance,
[Ariar80****], [Ibrahim****]: First, we introduce the coordinate transformation y1 = y, y2 = ẏ,
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such that Eq. (3.1) may be rewritten into the system of the random differential equations:

dy1

dt
= y2

dy2

dt
= −(α + βy2

1)y2 −
(
ω2

0 + γy2
1 + f(t, ω)

)
y1.

By the representation of the variables y1(t) and y2(t) in the standard form

y1(t) = a(t) cos φ(t)

y2(t) = −a(t) ω0 sin φ(t)

φ(t) = ω0 t + θ(t),

in which a(t) is a solution amplitude for elongation, whereas θ(t) is a phase and φ(t) is a
phase angle, the preceding system is transformed into the form convenient to the Khas’minskii
averiging principle (see [hasm****], [Ibrahim****], [Katica****]), which is based upon the ideas
of the Bogoliubov–Mitropolsky ([Bog,Mit****]. Without going into details (for more details
se, for example, [Ibrahim****]), as a final results of an application of the averiging principle,
one can obtain stochastic differential equations of the Itô type with respect to the averiged
amplitude a(t) and the averiged phase θ(t). The stochastic differential equation with respect to
the averiged amplitude will be of interest to us:

dat =
[

3
16

S(2ω0)
ω2

0

at dt− 1
2

(
α +

β

4
a2

t

)
at

]
dt +

√
S(2ω0)

8ω2
0

at dwt, t > 0,

a0 = η,

(3.2)

in which w = (wt, t ≥ 0) is a normalized Brownian motion, which is the outcome to the effect of
the random forces process. Since this equation cannot be effectively solvable (see [Skor.Gih****],
[Ja, Katica****], in order to describe its solution different methods are used. For example, since
the solution is a homogeneous Markovian process (see [Skor****], [Arnold****]), the corre-
sponding Kolmogorov–Fokker–Planck equation for a conditional probability density is used for
determining the stationary probability density of the averiged amplitude (see Ibrahim str 254
1985.****] [Ariaratnam 1980****]. Likewise, a comparison method is presented in [ja,Kat****],
[Ja****] to estimate the mean square expectation of this averiged amplitude.

For the sake of simpler writting, we are introducing the following notations:

µ =
3
16

S(2ω0)
ω2

0

− α

2
, ν =

√
S(2ω0)

8ω2
0

,

such that Eq. (3.2) becomes

dat =
(

µat − β

8
a3

t

)
dt + νat dwt, t > 0, a0 = η. (3.3)
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In connection with the discussion in Section 2, together with the non–linear oscillator motion
mathematically described with Eq. (3.1), we consider the corresponding linear one, mathemat-
ically described with the following equation

ÿ + αẏ +
(
ω2

0 + f(t, ω)
)
y = 0. (3.4)

In fact, the quadratic terms in (3.1) could be treated as perturbations with respect to the linear
equation (3.4).

By applying the stochastic averiging principle to Eq. (3.4), the corresponding equation with
respect to the averiged amplitude b(t) is that linear homogeneous stochastic differential equation
of the Itô type:

dbt = µbt dt + νbt dwt, t > 0, b0 = η. (3.5)

Thus, Eq. (3.3) could be treated as the perturbed equation with the small perturbation −β
8 a3,

while (3.5) is the corresponding unperturbed equation.
Let us note the following important fact: By applying the comparison method exposed in the

papers [Ja, kat****] and [Ja****], we find that a2
t can be compared with the solution zt of the

linear stochastic differential equation

dzt = (2µ + ν2) zt dt + 2νzt dwt, t > 0, z0 = η2,

in the sense that
a2

t ≤ zt, t ≥ 0 with probability one.

Since the solution of this equation may be written in the form (see [Arnold****], [Ibrahim****],
[Skor****], [Lipc****])

zt = η2e(2µ−ν2)t+2ν wt , t ≥ 0,

and according to the law of iterated logarithm, from which it follows that the sample function
of the Brownian motion approaches the limiting value

√
2t log(log t) as t →∞ with probability

one, it follows that 2µ− ν2 < 0, or in terms of the original damping ratio,

α >
S(2ω0)

4ω2
0

, (3.6)

is a necessary and sufficient condition for the equilibrium solution to be asymptotically stable
with probability one. Therefore, it is reasonable to think, under the condition (3.6), that the
averiged amplitude a(t) is bounded with some constant, with probability one. This conclusion
will be very important in the sequel.

Remember that, strictly mathematically, the usual procedure for determining the station-
ary probability density for the averiged amplitude from the corresponding Kolmogorov–Fokker–
Planck equation, requires that the drift and difussion coefficients of Eq. (3.3) be bounded, which
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is a atrong assumption. In practice there is an abundance of examples (see [Ariaratnam****],
[Roberts****], [Caugi****], [Ibrahim****]) to show that this boundedness condition is not es-
sential. However, the situation remains not completely clear and the previous commentary could
be an acceptable argument.

Since it is reasonable to think that the averiged amplitude is bounded with a constant q > 0
with probability one, determined in advance with the physical characteristics of the oscillator,
then β

8 | a |3 ≤ β
8 q3, and, therefore,

φ(β) =
β

8
q3.

Now, we could estimate the (2k)–th moment closeness of at and bt by using (2.10), but because
of the linearity of Eq. (3.5) we shall obtain one better estimation.

We need the following Itô’s differential formula, so–called the Itô’s diferentiation rule (see
[Skor****], [Arnold****], Lip****], [Ja-Inst****], [Ikeda****], Wong****]): If the stochastic
process (x(t), t ∈ [0, T ]) has the stochastic differential dxt = at dt + bt dwt and if the non–
random function f(t, x) is continuous together with its derivatives f ′t , f

′
x, f ′′xx, then the process

f(t, xt) has the stochastic differential

df(t, xt) =
(

f ′t(t, xt) + at f ′x(t, xt) +
1
2

b2
t f ′′xx(t, xt)

)
dt

+ bt f ′x(t, xt) dwt, t ∈ [0, T ].

Let us subtract the equations (3.3) and (3.5) in integral form,

at − bt =
∫ t

0

(
µ(as − bs)− β

8
a3

s

)
ds +

∫ t

0

ν(as − bs) dws, t ≥ 0,

and then apply the Itô’s differentiation rule to f(x) = x2k:

(at − bt)2k =2k
∫ t

0

(
µ(as − bs)− β

8
a3

s

)
(as − bs)2k−1ds

+ k(2k − 1)ν2

∫ t

0

(as − bs)2kds + 2kν

∫ t

0

(as − bs)2kdws, t ≥ 0.

From the basic property of the Itô’s integral it follows that E
∫ t

0
(as − bs)2kdws = 0, and thus

E|at − bt|2k ≤[
2k|µ|+ k(2k − 1)ν2

] ∫ t

0

E|as − bs|2kds

+
β

4
q3k

∫ t

0

E|as − bs|2k−1ds, t ≥ 0.
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Since mathematical expectation satisfies the well–known Hölder’s inequality E|X| ≤ (
E|X|p)1/p

for any real number p > 1, by taking p = 2k
2k−1 we obtain E|as−bs|2k ≤ (

E|as−bs|2k
)(2k−1)/(2k),

such that

E|at − bt|2k ≤[
2k|µ|+ k(2k − 1)ν2

] ∫ t

0

E|as − bs|2kds

+
β

4
q3k

∫ t

0

(
E|as − bs|2k

)(2k−1)/(2k)
ds, t ≥ 0.

To estimate E|at − bt|2k from this integral inequality, we shall apply the following version of
the well–known Gronwall–Bellman’s lemma [Bainov****, p. 39]: Let u(t), a(t) and b(t) be
nonnegative continuous functions in [0, T ] and let c > 0, 0 ≤ γ < 1 be constants. If

u(t) ≤ c +
∫ t

0

a(s)u(s) ds +
∫ t

0

b(s)uγ(s) ds, t ∈ [0, T ],

then

u(t) ≤
(

c1−γ e
(1−γ)

∫ t

0
a(s) ds + (1− γ)

∫ t

0

b(s) e
(1−γ)

∫ t

s
a(r) dr

ds

) 1
1−γ

, t ∈ [0, T ].

Because at and bt are continuous with probability one, the expectation E|at − bt|2k is also
continuous. By taking u(t) = E|at−bt|2k, γ = (2k−1)/(2k) and by applying the cited Gronwall–
Bellman’s lemma, we find

E|at − bt|2k ≤ C · β2ke2k[ |µ|+(2k−1)/2·ν2]t, t ≥ 0,

where C =
(

q3k
8[ |µ|+(2k−1)/2·ν2]

)2k

. In accordance with the considerations in Section 2, for any
number r ∈ (0, 1) let us determine T (β) from the relation

[ |µ|+ (2k − 1)/2 · ν2] T (β) = −r ln β.

Therefore,
sup

t∈[0,T (β)]

E|at − bt|2k ≤ C · β2k(1−r) → 0 as β → 0 (3.7)

and T (β) →∞ as β → 0.
Remember that the (2k)–th moment of the solution bt of the linear stochastic differential equa-

tion (3.5) may be written in the form (see [Arnold****], [Gihm****], [Ibrahim****], [Jank****])

E|b(t)|2k = η2ke2k[ µ+(2k−1)/2·ν2]t, t > 0.
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Therefore, this averiged amplitude is exponentially stable in the (2k)–th moment sense if and
only if µ + (2k − 1)/2 · ν2 < 0, or in terms of the original damping ratio,

α > (k + 1)
S(2ω0)

4ω2
0

. (3.8)

Note that then the condition (3.6) is also satisfied. Thus, for an arbitrary small value θ > 0,
from (3.7) we find

β < (θ/C)1/(2k(1−r)). (3.9)

However, if the damping factors of Eq. (3.1) satisfy (3.8) and (3.9) for a given small θ, then at is
different from bt, in the (2k)–th moment sense, for at most θ on the time–interval [0, T (β)]. In
accordance with this fact, it is reasonable to believe that the behavior of this non–linear system
is stable, approximately, in the (2k)–th moment sense, analogously to the linear one.

Let us give some concluding remarks: The method exposed in this paper for the description of
the behavior of the non–linear oscillator amplitude is illustrated on a simple example, comparable
with the linear one. Likewise, it could be applied on some other situations, when mostly classical
estimations did not give suitable results. Of course, it could be necessary to know conditions
under which the corresponding unperturbed equations are asymptotically stable in the (2k)–th
moment sense. Moreover, this pethod could be applied to describe the behavior of nonlinear
dynamic systems subjected to more independent random excitations of a Gaussian white noise
type, what will be a subject of our forthcoming work.


