Lagrangian submanifolds in the nearly Kähler $S^3 \times S^3$

Luc Vrancken

Based on joint work Bart Dioos and J Xianfeng Wang (Nankai University)

Zlatibor
September, 2016
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

- Nearly Kähler manifolds
Almost complex surfaces

Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
3. Its relation with the Euclidean induced structure
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
3. Its relation with the Euclidean induced structure
4. Basic properties of Lagrangian submanifolds
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
3. Its relation with the Euclidean induced structure
4. Basic properties of Lagrangian submanifolds
5. Elementary examples of Lagrangian submanifolds
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
3. Its relation with the Euclidean induced structure
4. Basic properties of Lagrangian submanifolds
5. Elementary examples of Lagrangian submanifolds
6. Totally geodesic Lagrangian submanifolds
Abstract

We will discuss lagrangian submanifolds in $S^3 \times S^3$. The main topics we discuss are the following:

1. Nearly Kähler manifolds
2. The construction of the nearly Kaehler structure on $S^3 \times S^3$
3. Its relation with the Euclidean induced structure
4. Basic properties of Lagrangian submanifolds
5. Elementary examples of Lagrangian submanifolds
6. Totally geodesic Lagrangian submanifolds
7. Lagrangian submanifolds with constant sectional curvature
Nearly Kähler manifolds
An **almost Hermitian** manifold \((M, g, J)\) is a manifold \(M\) with metric \(g\) and almost complex structure \(J\) (endomorphism s.t. \(J^2 = -\text{Id}\)) satisfying

\[
g(JX, JY) = g(X, Y), \quad X, Y \in TM.
\]

A **nearly Kähler** manifold is an almost Hermitian manifold \((M, g, J)\) with the extra assumption that \(\nabla J\) is skew-symmetric:

\[
(\nabla_X J)Y + (\nabla_Y J)X = 0, \quad X, Y \in TM.
\]
Nearly Kähler manifolds
Definitions

- An almost Hermitian manifold \((M, g, J)\) is a manifold \(M\) with metric \(g\) and almost complex structure \(J\) (endomorphism s.t. \(J^2 = -\text{Id}\)) satisfying
 \[
g(JX, JY) = g(X, Y), \quad X, Y \in TM.
 \]

- A nearly Kähler manifold is an almost Hermitian manifold \((M, g, J)\) with the extra assumption that \(\nabla J\) is skew-symmetric:
 \[
 (\nabla_X J)Y + (\nabla_Y J)X = 0, \quad X, Y \in TM.
 \]

First example introduced by Fukami and Ishihara in 1955 and systematically studied by A. Gray in several papers starting from 1970.
For convenience, we will write $G(X, Y) = (\nabla_X J)Y$.

Some identities:

$G(X, Y) + G(Y, X) = 0,$

$G(X, JY) + JG(X, Y) = 0,$

$g(G(X, Y), Z)$ and $g(G(X, Y), JZ)$ are totally anti symmetric.

$\bar{\nabla}J = 0.$

Here $\bar{\nabla}_X Y = \nabla_X Y - \frac{1}{2} JG(X, Y)$ is the canonical Hermitian connection.
For nearly Kähler manifolds the 6-dimensional case is particularly interesting, as

by the structure theorems of Nagy, they serve as building blocks for arbitrary nearly Kähler manifolds.
For nearly Kähler manifolds the 6-dimensional case is particularly interesting, as

1. by the structure theorems of Nagy, they serve as building blocks for arbitrary nearly Kähler manifolds

2. by a result of Grunewald, provided the nearly Kähler manifold is simply connected, there is a bijective correspondence between nearly Kähler structures and unit real Killing spinors
Recently it has been shown by Butruille that the only homogeneous 6-dimensional nearly Kähler manifolds are

- the nearly Kähler 6-sphere,
Recently it has been shown by Butruille that the only homogeneous 6-dimensional nearly Kähler manifolds are

1. the nearly Kähler 6-sphere,
2. $S^3 \times S^3$,

All these spaces are compact.
Recently it has been shown by Butruille that the only homogeneous 6-dimensional nearly Kähler manifolds are

1. the nearly Kähler 6-sphere,
2. $S^3 \times S^3$,
3. the projective space $\mathbb{C}P^3$ (but not with the usual metric and complex structure)
Recently it has been shown by Butruille that the only homogeneous 6-dimensional nearly Kähler manifolds are

1. the nearly Kähler 6-sphere,
2. $S^3 \times S^3$,
3. the projective space $\mathbb{C}P^3$ (but not with the usual metric and complex structure)
4. $M = SU(3)/U(1) \times U(1)$, the space of flags of \mathbb{C}^3.
Recently it has been shown by Butruille that the only homogeneous 6-dimensional nearly Kähler manifolds are

1. the nearly Kähler 6-sphere,
2. $S^3 \times S^3$,
3. the projective space $\mathbb{C}P^3$ (but not with the usual metric and complex structure)
4. $M = SU(3)/U(1) \times U(1)$, the space of flags of \mathbb{C}^3.

All these spaces are compact.
The nearly Kähler $S^3 \times S^3$
The nearly Kähler $S^3 \times S^3$

The nearly Kähler structure

Let

$$Z(p, q) = (pU(p, q), qV(p, q)),$$

be a tangent vector at the point (p, q). Then $U(p, q)$ and $V(p, q)$ are imaginary quaternions.
The nearly Kähler $S^3 \times S^3$

The nearly Kähler structure

Let

$$Z(p, q) = (pU(p, q), qV(p, q)),$$

be a tangent vector at the point (p, q). Then $U(p, q)$ and $V(p, q)$ are imaginary quaternions.

- The almost complex structure J on $S^3 \times S^3$ is defined by

$$JZ_{(p, q)} = \frac{1}{\sqrt{3}} (p(2V - U), q(-2U + V)).$$
The nearly Kähler $S^3 \times S^3$

The nearly Kähler structure

Let

$$Z(p, q) = (pU(p, q), qV(p, q)),$$

be a tangent vector at the point (p, q). Then $U(p, q)$ and $V(p, q)$ are imaginary quaternions.

- The almost complex structure J on $S^3 \times S^3$ is defined by

$$JZ_{(p, q)} = \frac{1}{\sqrt{3}} (p(2V - U), q(-2U + V)).$$

- If $\langle \cdot, \cdot \rangle$ is the product metric on $S^3 \times S^3$, the metric g is given by

$$g(Z, Z') = \frac{1}{2} (\langle Z, Z' \rangle + \langle JZ, JZ' \rangle)$$

$$= \frac{4}{3} (\langle U, U' \rangle + \langle V, V' \rangle)$$

$$- \frac{2}{3} (\langle U, V' \rangle + \langle U', V \rangle).$$
In $S^3 \times S^3$ we have that the tensor G has the following additional properties:

\[
g(G(X, Y), G(Z, W)) = \frac{1}{3} \left(g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + g(JX, Z)g(JW, Y) - g(JX, W)g(JZ, Y) \right),
\]

\[
G(X, G(Y, Z)) = \frac{1}{3} \left(g(X, Z)Y - g(X, Y)Z + g(JX, Z)JY - g(JX, Y)JZ \right),
\]

\[
(\nabla G)(X, Y, Z) = \frac{1}{3} \left(g(X, Z)JY - g(X, Y)JZ - g(JY, Z)X \right).
\]
For unit quaternions a, b and c the map

$$F(p, q) = (apc^{-1}, bqc^{-1})$$

is an isometry.
The nearly Kähler $S^3 \times S^3$

An almost product structure P

We define the almost product structure P as

$$P(Z)_{(p,q)} = (pV, qU).$$
The nearly Kähler $S^3 \times S^3$
An almost product structure P

We define the almost product structure P as

\[P(Z)_{(p,q)} = (pV, qU). \]

Properties:

\[P^2 = \text{Id}, \]
\[PJ = -JP, \]
\[g(PZ, PZ') = g(Z, Z'), \]
\[P \text{ is preserved by isometries}, \]
\[PG(X, Y) + G(PX, PY) \]

Note that the usual product structure Q:

\[Q(Z)_{(p,q)} = (-pU, qV). \]

is not compatible with the almost complex metric.
The nearly Kähler $S^3 \times S^3$

An almost product structure P

We define the **almost product structure** P as

$$P(Z)_{(p,q)} = (pV, qU).$$

Properties:

- $P^2 = \text{Id}$,
- $PJ = -JP$,
- $g(PZ, PZ') = g(Z, Z')$,
- P is preserved by isometries,
- $PG(X, Y) + G(PX, PY)$

Note that the usual product structure

$$Q(Z)_{(p,q)} = (-pU, qV).$$

is not compatible with the almost complex metric.
The nearly Kähler $S^3 \times S^3$

Curvature tensor

- The Riemann curvature tensor of $S^3 \times S^3$ is

$$\tilde{R}(U, V)W = \frac{5}{12} (g(V, W)U - g(U, W)V)$$

$$+ \frac{1}{12} (g(JV, W)JU - g(JU, W)JV - 2g(JU, V)JW)$$

$$+ \frac{1}{3} (g(PV, W)PU - g(PU, W)PV)$$

$$+ g(JPV, W)JPU - g(JPU, W)JPV).$$

- $$(\tilde{\nabla}_Z P)Z' = \frac{1}{2} J(G(Z, PZ') + PG(Z, Z'))$$
Relations with the Euclidean induced structure
Remark that the Levi Civita connections $\tilde{\nabla}$ of g and $\hat{\nabla}$ of the usual metric are related by

$$\hat{\nabla}_Z Z' = \tilde{\nabla}_Z Z' + \frac{1}{2}(JG(Z, PZ') + JG(Z', PZ)).$$
Remark that the Levi Civita connections ∇ of g and $\hat{\nabla}$ of the usual metric are related by

$$\hat{\nabla}_Z Z' = \nabla_Z Z' + \frac{1}{2}(JG(Z, PZ') + JG(Z', PZ)).$$

$$QZ = \frac{1}{\sqrt{3}}(2PJZ - JZ).$$

and
Remark that the Levi Civita connections $\tilde{\nabla}$ of g and $\hat{\nabla}$ of the usual metric are related by

$$\hat{\nabla}_Z Z' = \tilde{\nabla}_Z Z' + \frac{1}{2}(JG(Z, PZ') + JG(Z', PZ)).$$

$$QZ = \frac{1}{\sqrt{3}}(2PJZ - JZ).$$

and

$$\langle Z, Z' \rangle = g(Z, Z') + \frac{1}{2}g(Z, PZ')$$

$$\langle Z, QZ' \rangle = \frac{\sqrt{3}}{2}g(Z, PJZ').$$
Remark that the Levi Civita connections $\tilde{\nabla}$ of g and $\hat{\nabla}$ of the usual metric are related by

$$\hat{\nabla}_Z Z' = \tilde{\nabla}_Z Z' + \frac{1}{2}(JG(Z, PZ') + JG(Z', PZ)).$$

$$QZ = \frac{1}{\sqrt{3}}(2PJZ - JZ).$$

and

$$\langle Z, Z' \rangle = g(Z, Z') + \frac{1}{2}g(Z, PZ')$$

$$\langle Z, QZ' \rangle = \frac{\sqrt{3}}{2}g(Z, PJZ').$$

Note that the $\hat{\nabla}$ is given by

$$D_Z Z' = \tilde{\nabla}_Z Z' - \frac{1}{2} \langle Z, QZ' \rangle(-p, q) - \frac{1}{2} \langle Z, Z' \rangle(p, q).$$
Basic properties of Lagrangian submanifolds
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space.
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space. In view of the dimension this also implies that J of a normal vector is tangent, i.e. J is an isomorphism between the tangent and the normal space.
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space. In view of the dimension this also implies that J of a normal vector is tangent, i.e. J is an isomorphism between the tangent and the normal space.

Theorem (Schäfer-Smoczyk)

Let M be a Lagrangian submanifold of $S^3 \times S^3$. Then we have

1. M is orientable
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space.
In view of the dimension this also implies that J of a normal vector is tangent, i.e. J is an isomorphism between the tangent and the normal space.

Theorem (Schäfer-Smoczyk)

Let M be a Lagrangian submanifold of $S^3 \times S^3$. Then we have

1. M is orientable
2. $G(X,Y)$ is a normal vector (X,Y tangential)
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space. In view of the dimension this also implies that J of a normal vector is tangent, i.e. J is an isomorphism between the tangent and the normal space.

Theorem (Schäfer-Smoczyk)

Let M be a Lagrangian submanifold of $S^3 \times S^3$ Then we have:

1. M is orientable
2. $G(X, Y)$ is a normal vector (X, Y tangential)
3. M is minimal
A 3-dimensional manifold M^3 in $S^3 \times S^3$ is called Lagrangian if J maps the tangent space into the normal space. In view of the dimension this also implies that J of a normal vector is tangent, i.e. J is an isomorphism between the tangent and the normal space.

Theorem (Schäfer-Smoczyk)

Let M be a Lagrangian submanifold of $S^3 \times S^3$ Then we have

1. M is orientable
2. $G(X, Y)$ is a normal vector (X, Y tangential)
3. M is minimal
4. $\langle h(X, Y), JZ \rangle$ is totally symmetric

G is related to the canonical volume form ω by

$$\omega(X, Y, Z) = \sqrt{3}g(JG(X, Y), Z).$$
We can write

\[PX = AX + JBX \]
We can write

\[PX = AX + JBX \]

We have that

- \(A \) and \(B \) are symmetric operators
We can write

\[PX = AX + JBX \]

We have that

1. \(A \) and \(B \) are symmetric operators
2. \(A^2 + B^2 = I \)
We can write

\[PX = AX + JBX \]

We have that

1. \(A \) and \(B \) are symmetric operators
2. \(A^2 + B^2 = I \)
3. \([A, B] = 0 \)
We can write

\[PX = AX + JBX \]

We have that

1. \(A \) and \(B \) are symmetric operators
2. \(A^2 + B^2 = I \)
3. \([A, B] = 0\)

These properties imply that \(A \) and \(B \) can be diagonalised simultaneously and that there exists a basis \(e_1, e_2, e_3 \) of the tangent space at every point such that

\[Pe_i = \cos 2\theta_i e_i + \sin 2\theta_i Je_i \]
The tensor $T(X, Y) = S_{JX} Y = -Jh(X, Y)$ is minimal and $g(T(X, Y), Z)$ is totally symmetric.
Basic Equations

1. The tensor $T(X, Y) = S_{JX} Y = -Jh(X, Y)$ is minimal and $g(T(X, Y), Z)$ is totally symmetric,

2. Gauss equation
Basic Equations

1. The tensor $T(X, Y) = S_{JX} Y = -Jh(X, Y)$ is minimal and $g(T(X, Y), Z)$ is totally symmetric.

2. Gauss equation

$$R(X, Y)Z = \frac{5}{12} (g(Y, Z)X - g(X, Z)Y)$$
$$+ \frac{1}{3} (g(AY, Z)AX - g(AX, Z)AY + g(BY, Z)BX - g(BX, Z)BY)$$
$$+ [S_{JX}, S_{JY}]Z.$$

3. Codazzi equation

$$\nabla h(X, Y, Z) - \nabla h(Y, X, Z) =$$
$$\frac{1}{3} (g(AY, Z)JBX - g(AX, Z)JBY - g(BY, Z)JAX + g(BX, Z)JAY)$$
Covariant derivatives equations for A and B:

\[
(\nabla_X A) Y = BS_{JX} Y - Jh(X, BY) + \frac{1}{2}(JG(X, AY) - AJG(X, Y)),
\]

\[
(\nabla_X B) Y = Jh(X, AY) - AS_{JX} Y + \frac{1}{2}(JG(X, BY) - BJG(X, Y)).
\]
Proposition

The sum of the angle functions vanishes modulo π
Lemma

The derivatives of the angles θ_i give the components of the second fundamental form

$$E_i(\theta_j) = - h^i_{jj}$$

except h^3_{12}. The second fundamental form and covariant derivative are related by

$$h^k_{ij} \cos(\theta_j - \theta_k) = \left(\frac{\sqrt{3}}{6} \varepsilon^k_{ij} - \omega^k_{ij} \right) \sin(\theta_j - \theta_k).$$
Elementary examples of Lagrangian submanifolds
Schäfer-Smoczyk

Example 1: \(f(g) = (g, 1) \).
Schäfer-Smoczyk

Example 1: \(f(g) = (g, 1) \).

\[df(E_1(g))) = (gi, 0)_{(g, 1)}, \]
\[df(E_2(g))) = (gj, 0)_{(g, 1)}, \]
\[df(E_3(g))) = (−gk, 0)_{(g, 1)}. \]
Example 1: $f(g) = (g, 1)$.

\[df(E_1(g))) = (gi, 0)_{(g,1)}, \]
\[df(E_2(g))) = (gj, 0)_{(g,1)}, \]
\[df(E_3(g))) = (-gk, 0)_{(g,1)}. \]

\[Pdf(E_1(g))) = (0, i)_{(g,1)}, \]
\[Pdf(E_2(g))) = (0, j)_{(g,1)}, \]
\[Pdf(E_3(g))) = (0, -k)_{(g,1)}. \]
Example 1: $f(g) = (g, 1)$.

\[
\begin{align*}
 df(E_1(g))) &= (gi, 0)_{(g,1)}, \\
 df(E_2(g))) &= (gj, 0)_{(g,1)}, \\
 df(E_3(g))) &= (-gk, 0)_{(g,1)}. \\
\end{align*}
\]

\[
\begin{align*}
 Ppdf(E_1(g))) &= (0, i)_{(g,1)}, \\
 Ppdf(E_2(g))) &= (0, j)_{(g,1)}, \\
 Ppdf(E_3(g))) &= (0, -k)_{(g,1)}. \\
\end{align*}
\]

\[
\begin{align*}
 Jdf(E_1(g))) &= \frac{1}{\sqrt{3}} (-gi, -2i)_{(g,1)}, \\
 Jdf(E_2(g))) &= \frac{1}{\sqrt{3}} (-gj, -2j)_{(g,1)}, \\
 Jdf(E_3(g))) &= \frac{1}{\sqrt{3}} (gk, 2k)_{(g,1)}. \\
\end{align*}
\]
Schäfer-Smoczyk

Example 1: \(f(g) = (g, 1) \).

\[
df(E_1(g))) = (gi, 0)_{(g,1)},
\]
\[
df(E_2(g))) = (gj, 0)_{(g,1)},
\]
\[
df(E_3(g))) = (-gk, 0)_{(g,1)}.\]

\[
Pdf(E_1(g))) = (0, i)_{(g,1)},
\]
\[
Pdf(E_2(g))) = (0, j)_{(g,1)},
\]
\[
Pdf(E_3(g))) = (0, -k)_{(g,1)}.\]

\[
Jdf(E_1(g))) = \frac{1}{\sqrt{3}} (-gi, -2i)_{(g,1)},
\]
\[
Jdf(E_2(g))) = \frac{1}{\sqrt{3}} (-gj, -2j)_{(g,1)},
\]
\[
Jdf(E_3(g))) = \frac{1}{\sqrt{3}} (gk, 2k)_{(g,1)}.\]

\[
(2\theta_1, 2\theta_2, 2\theta_3) = \left(\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{2\pi}{3} \right).\]
Schäfer-Smoczyk

Example 2: \(f(g) = (1, g) \)
Schäfer-Smoczyk

Example 2: \(f(g) = (1, g) \)

\[
\begin{align*}
 df(E_1(g)) &= (0, gi)(1,g), \\
 df(E_2(g)) &= (0, gj)(1,g), \\
 df(E_3(g)) &= (0, -gk)(1,g).
\end{align*}
\]

\[
\begin{align*}
 P\text{df}(E_1(g)) &= (i, 0)(1,g), \\
 P\text{df}(E_2(g)) &= (j, 0)(1,g), \\
 P\text{df}(E_3(g)) &= (k, 0)(1,g).
\end{align*}
\]

\[
\begin{align*}
 J\text{df}(E_1(g)) &= \frac{1}{\sqrt{3}} (2i, gi)(1,g), \\
 J\text{df}(E_2(g)) &= \frac{1}{\sqrt{3}} (2j, gj)(1,g)), \\
 J\text{df}(E_3(g)) &= \frac{1}{\sqrt{3}} (-2k, gk)(1,g).
\end{align*}
\]

\[
(2\theta_1, 2\theta_2, 2\theta_3) = \left(\frac{4\pi}{3}, \frac{4\pi}{3}, \frac{4\pi}{3} \right)
\]
Example 3: \(f(g) = (g, g) \)

\[
\begin{align*}
 df(E_1(g)) &= (gi, gi)(g, g) = P \text{df}(E_1(g)), \\
 df(E_2(g)) &= (gj, gj)(g, g) = P \text{df}(E_2(g)), \\
 df(E_3(g)) &= (-gk, -gk)(g, g) = P \text{df}(E_2(g)).
\end{align*}
\]

\[
\begin{align*}
 J\text{df}(E_1(g)) &= \frac{1}{\sqrt{3}} (gi, -gi)(g, g), \\
 J\text{df}(E_2(g)) &= \frac{1}{\sqrt{3}} (gj, gj)(g, g), \\
 J\text{df}(E_3(g)) &= \frac{1}{\sqrt{3}} (-gk, gk)(g, g).
\end{align*}
\]
Example 3: $f(g) = (g, g)$

\[df(E_1(g)) = (gi, gi)_{(g,g)} = Pd_f(E_1(g)), \]
\[df(E_2(g)) = (gj, gj)_{(g,g)} = Pd_f(E_2(g)), \]
\[df(E_3(g)) = (-gk, -gk)_{(g,g)} = Pd_f(E_2(g)). \]

\[Jdf(E_1(g)) = \frac{1}{\sqrt{3}} (gi, -gi)_{(g,g)}, \]
\[Jdf(E_2(g)) = \frac{1}{\sqrt{3}} (gj, gj)_{(g,g)}, \]
\[Jdf(E_3(g)) = \frac{1}{\sqrt{3}} (-gk, gk)_{(g,g)}. \]

As P is the identity, we see that the angle functions vanish.
Moroianu-Semmelmann

Example 4: \(f(g) = (g, gi) \)
Moroianu-Semmelmann

Example 4: \(f(g) = (g, gi) \)

\[
\begin{align*}
\text{df}(E_1(g)) &= (gi, -g)_{(g,gi)}, \\
\text{df}(E_2(g)) &= (gj, -gk)_{(g,gi)}, \\
\text{df}(E_3(g)) &= (-gk, -gj)_{(g,gi)}. \\
\end{align*}
\]
Example 4: $f(g) = (g, gi)$

- $df(E_1(g)) = (gi, -g)(g, gi)$,
- $df(E_2(g)) = (gj, -gk)(g, gi)$,
- $df(E_3(g)) = (-gk, -gj)(g, gi)$.

$Pdf(E_1(g)) = (gi, -g)(g, gi) = dF(E_1(g))$,
$Pdf(E_2(g)) = (gj, -gk)(g, gi) = -dF(E_2(g))$,
$Pdf(E_3(g)) = (-gk, -gj)(g, gi) = -dF(E_3(g))$.

$(2\theta_1, 2\theta_2, 2\theta_3) = (0, \pi, \pi)$
Moroianu-Semmelmann

Example 4: $f(g) = (g, gi)$

$df(E_1(g)) = (gi, -g)_{(g, gi)},$
$df(E_2(g)) = (gj, -gk)_{(g, gi)},$
$df(E_3(g)) = (-gk, -gj)_{(g, gi)}.$

$Pdf(E_1(g)) = (gi, -g)_{(g, gi)} = dF(E_1(g)),$
$Pdf(E_2(g)) = (gj, -gk)_{(g, gi)} = -dF(E_2(g)),$
$Pdf(E_3(g)) = (-gk, -gj)_{(g, gi)} = -dF(E_3(g)).$

$Jdf(E_1(g)) = \frac{1}{\sqrt{3}}(gi, g)_{(g, gi)},$
$Jdf(E_2(g)) = -\sqrt{3}(gj, gk)_{(g, gi)},$
$Jdf(E_3(g)) = \sqrt{3}(gk, -gj)_{(g, gi)}.$
Almost complex surfaces
Elementary examples of Lagrangian submanifolds

Moroianu-Semmelmann

Example 4: $f(g) = (g, gi)$

$$

df(E_1(g)) = (gi, -g)_{(g, gi)}, \\

df(E_2(g)) = (gj, -gk)_{(g, gi)}, \\

df(E_3(g)) = (-gk, -gj)_{(g, gi)}.
$$

$$
Pdf(E_1(g)) = (gi, -g)_{(g, gi)} = dF(E_1(g)), \\
Pdf(E_2(g)) = (gj, -gk)_{(g, gi)} = -dF(E_2(g)), \\
Pdf(E_3(g)) = (-gk, -gj)_{(g, gi)} = -dF(E_3(g)).
$$

$$
Jdf(E_1(g)) = \frac{1}{\sqrt{3}}(gi, g)_{(g, gi)}, \\
Jdf(E_2(g)) = -\sqrt{3}(gj, gk)_{(g, gi)}), \\
Jdf(E_3(g)) = \sqrt{3}(gk, -gj)_{(g, gi)}.
$$

$$(2\theta_1, 2\theta_2, 2\theta_3) = (0, \pi, \pi)$$
Moroianu-Semmelmann

Example 5: \(f(g) = (g^{-1}, \text{gig}^{-1}) \)
Example 5: $f(g) = (g^{-1}, \text{gig}^{-1})$

\[
\begin{align*}
\text{df}(E_1(g)) &= (-ig^{-1}, 0)_{(g^{-1}, \text{gig}^{-1})}, \\
\text{df}(E_2(g)) &= (-jg^{-1}, -2gkg^{-1})_{(g^{-1}, \text{gig}^{-1})}, \\
\text{df}(E_3(g)) &= (kg^{-1}, -2gjg^{-1})_{(g^{-1}, \text{gig}^{-1})}.
\end{align*}
\]

\[
\begin{align*}
\text{Pdf}(E_1(g)) &= (0, 1)_{(g^{-1}, \text{gig}^{-1})}, \\
\text{Pdf}(E_2(g)) &= (-2jg^{-1}, -gkg^{-1})_{(g^{-1}, \text{gig}^{-1})}, \\
\text{Pdf}(E_3(g)) &= (2kg^{-1}, -gjg^{-1})_{(g^{-1}, \text{gig}^{-1})}.
\end{align*}
\]

\[
\begin{align*}
\text{Jdf}(E_1(g)) &= \frac{1}{\sqrt{3}} (ig^{-1}, -2)_{(g^{-1}, \text{gig}^{-1})}, \\
\text{Jdf}(E_2(g)) &= \frac{1}{\sqrt{3}} (-jg^{-1}, 0)_{(g^{-1}, \text{gig}^{-1})}, \\
\text{Jdf}(E_3(g)) &= \frac{1}{\sqrt{3}} (3kg^{-1}, 0)_{(g^{-1}, \text{gig}^{-1})}.
\end{align*}
\]
Almost complex surfaces
Elementary examples of Lagrangian submanifolds

Moroianu-Semmelmann

Example 5: \(f(g) = (g^{-1}, gig^{-1}) \)

\[
\begin{align*}
df(E_1(g))) &= (-ig^{-1}, 0)_{(g^{-1}, gig^{-1})}, \\
df(E_2(g))) &= (-jg^{-1}, -2gkg^{-1})_{(g^{-1}, gig^{-1})}, \\
df(E_3(g))) &= (kg^{-1}, -2gjg^{-1})_{(g^{-1}, gig^{-1})}.
\end{align*}
\]

\[
\begin{align*}
Pdf(E_1(g))) &= (0, 1)_{(g^{-1}, gig^{-1})}, \\
Pdf(E_2(g))) &= (-2jg^{-1}, -gkg^{-1})_{(g^{-1}, gig^{-1})}, \\
Pdf(E_3(g))) &= (2kg^{-1}, -gjg^{-1})_{(g^{-1}, gig^{-1})}.
\end{align*}
\]

\[
\begin{align*}
Jdf(E_1(g))) &= \frac{1}{\sqrt{3}}(ig^{-1}, -2)_{(g^{-1}, gig^{-1})}, \\
Jdf(E_2(g))) &= \frac{1}{\sqrt{3}}(-jg^{-1}, 0)_{(g^{-1}, gig^{-1})}, \\
Jdf(E_3(g))) &= \frac{1}{\sqrt{3}}(3kg^{-1}, 0)_{(g^{-1}, gig^{-1})}.
\end{align*}
\]

\[
(2\theta_1, 2\theta_2, 2\theta_3) = \left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{4\pi}{3} \right)
\]
Example 6: \(f(g) = (gig^{-1}, g^{-1}) \)
Almost complex surfaces
Elementary examples of Lagrangian submanifolds

Moroianu-Semmelmann

Example 6: \(f(g) = (g_{ig}^{-1}, g^{-1}) \) So this is the previous immersions with both components interchanged. Then

\[
\begin{align*}
df(E_1(g))) &= (0, -ig^{-1})(g_{ig}^{-1}, g^{-1}), \\
df(E_2(g))) &= (-2gkg^{-1}, -jg^{-1})(g_{ig}^{-1}, g^{-1}), \\
df(E_3(g))) &= (-2gjg^{-1}, kg^{-1})(g_{ig}^{-1}, g^{-1}).
\end{align*}
\]

\[
\begin{align*}
Pdf(E_1(g))) &= (1, 0)(g_{ig}^{-1}, g^{-1}), \\
Pdf(E_2(g))) &= (-gkg^{-1}, -2jg^{-1})(g_{ig}^{-1}, g^{-1}), \\
Pdf(E_3(g))) &= (-gjg^{-1}, 2kg^{-1})(g_{ig}^{-1}, g^{-1}).
\end{align*}
\]

\[
\begin{align*}
Jdf(E_1(g))) &= \frac{1}{\sqrt{3}} (2, ig^{-1})(g_{ig}^{-1}, g^{-1}), \\
Jdf(E_2(g))) &= \frac{1}{\sqrt{3}} (0, 3jg^{-1})(g_{ig}^{-1}, g^{-1}), \\
Jdf(E_3(g))) &= \frac{1}{\sqrt{3}} (0, -3kg^{-1})(g_{ig}^{-1}, g^{-1}).
\end{align*}
\]

\[
(2\theta_1, 2\theta_2, 2\theta_3) = \left(\frac{2\pi}{3}, \frac{5\pi}{3}, \frac{5\pi}{3} \right)
\]
Moroianu-Semmelmann

Example 7: $f(g) = (gig^{-1}, gjg^{-1})$

For the tangent map we have

$$df(E_1) = (0, 2gkg^{-1}),$$

$$df(E_2) = (-2gkg^{-1}, 0),$$

$$df(E_3) = 2(-gjg^{-1}, gig^{-1}).$$

Also

$$Jdf(E_1) = 2\sqrt{3}(2gkg^{-1}),$$

$$Jdf(E_2) = 2\sqrt{3}(-gkg^{-1}, -2),$$

$$Jdf(E_3) = -2\sqrt{3}(-gjg^{-1}, gig^{-1}).$$

We also have

$$Pdf(E_1) = (2, 0) = -\frac{1}{2}(df(E_1) - \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_2) = (0, 2) = -\frac{1}{2}(df(E_1) + \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_3) = -2(-gjg^{-1}, -gig^{-1}) = df(E_3).$$

The angles $2\theta_i$ are thus equal to 0, $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$.
Example 7: $f(g) = (gig^{-1}, gjg^{-1})$ For the tangent map we have $df(E_1) = (0, 2gkg^{-1})$, $df(E_2) = (-2gkg^{-1}, 0)$, $df(E_3) = 2(-gjg^{-1}, gig^{-1})$.
Example 7: $f(g) = (g_{ij}^{-1}, g_{jig}^{-1})$ For the tangent map we have $df(E_1) = (0, 2kgg^{-1})$, $df(E_2) = (-2kgg^{-1}, 0)$, $df(E_3) = 2(-g_{jig}^{-1}, g_{jig}^{-1})$. Also $Jdf(E_1) = \frac{2}{\sqrt{3}}(2, kgg^{-1})$, $Jdf(E_2) = \frac{2}{\sqrt{3}}(kgg^{-1}, -2)$ and $Jdf(E_3) = -\frac{2}{\sqrt{3}}(g_{jig}^{-1}, g_{jig}^{-1})$.
Example 7: $f(g) = (gig^{-1}, gjg^{-1})$ For the tangent map we have $df(E_1) = (0, 2gkg^{-1})$, $df(E_2) = (-2gkg^{-1}, 0)$, $df(E_3) = 2(-gjg^{-1}, gig^{-1})$. Also $Jdf(E_1) = \frac{2}{\sqrt{3}}(2, gkg^{-1})$, $Jdf(E_2) = \frac{2}{\sqrt{3}}(gkg^{-1}, -2)$ and $Jdf(E_3) = -\frac{2}{\sqrt{3}}(gjg^{-1}, gig^{-1})$.

We also have

$$Pdf(E_1) = (2, 0) = -\frac{1}{2}(df(E_1) - \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_2) = (0, 2) = -\frac{1}{2}(df(E_1) + \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_3) = -2(gjg^{-1}, -gig^{-1}) = df(E_3).$$
Example 7: $f(g) = (gig^{-1}, gjg^{-1})$. For the tangent map we have $df(E_1) = (0, 2gkg^{-1})$, $df(E_2) = (-2gkg^{-1}, 0)$, $df(E_3) = 2(-gjg^{-1}, gig^{-1})$.

Also $Jdf(E_1) = \frac{2}{\sqrt{3}}(2, gkg^{-1})$, $Jdf(E_2) = \frac{2}{\sqrt{3}}(gkg^{-1}, -2)$ and $Jdf(E_3) = -\frac{2}{\sqrt{3}}(gjg^{-1}, gig^{-1})$.

We also have

$$Pdf(E_1) = (2, 0) = -\frac{1}{2}(df(E_1) - \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_2) = (0, 2) = -\frac{1}{2}(df(E_1) + \sqrt{3}Jdf(E_2)),$$

$$Pdf(E_3) = -2(gjg^{-1}, -gig^{-1}) = df(E_3).$$

The angles $2\theta_i$ are thus equal to 0, $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$.
Example 8. Consider the immersion \(f : \mathbb{R}^3 \to S^3 \times S^3 : (\tilde{u}, \tilde{v}, \tilde{w}) \mapsto (p(\tilde{u}, \tilde{w}), q(\tilde{u}, \tilde{v})) \) where \(p \) and \(q \) are constant mean curvature torii in \(S^3 \) given by:

\[
p(\tilde{u}, \tilde{w}) = \left(\cos(\tilde{u}) \cos(\tilde{w}), \cos(\tilde{u}) \sin(\tilde{w}), \sin(\tilde{u}) \cos(\tilde{w}), \varepsilon_1 \sin(\tilde{u}) \sin(\tilde{w}) \right),
\]

\[
q(\tilde{u}, \tilde{v}) = \left(\cos(\tilde{u}) \cos(\tilde{v}), \cos(\tilde{u}) \sin(\tilde{v}), \sin(\tilde{u}) \cos(\tilde{v}), \varepsilon_2 \sin(\tilde{u}) \sin(\tilde{v}) \right).
\]

Straightforward computations give that \(u, v, w \) determined by \(\tilde{u} = \sqrt{\frac{3}{2}}u \), \(\tilde{v} = \sqrt{\frac{3}{2}}v \) and \(\tilde{w} = \sqrt{\frac{3}{2}}w \) are the standard flat coordinates. So it is an immersion of a torus.

The angles \(2\theta_i \) are again equal to 0, \(\frac{2\pi}{3} \) and \(\frac{4\pi}{3} \).
Example 8. Consider the immersion $f : \mathbb{R}^3 \to S^3 \times S^3 : (\tilde{u}, \tilde{v}, \tilde{w}) \mapsto (p(\tilde{u}, \tilde{w}), q(\tilde{u}, \tilde{v}))$ where p and q are constant mean curvature torii in S^3 given by

$$p = (\cos(\tilde{u}) \cos(\tilde{w}), \cos(\tilde{u}) \sin(\tilde{w}), \sin(\tilde{u}) \cos(\tilde{w}), \varepsilon_1 \sin(\tilde{u}) \sin(\tilde{w})),
$$

$$q = (\cos(\tilde{u}) \cos(\tilde{v}), \cos(\tilde{u}) \sin(\tilde{v}), \sin(\tilde{u}) \cos(\tilde{v}), \varepsilon_2 \sin(\tilde{u}) \sin(\tilde{w}))d,$$

where d is the unit quaternion given by
Example 8. Consider the immersion $f : \mathbb{R}^3 \to S^3 \times S^3 : (\tilde{u}, \tilde{v}, \tilde{w}) \mapsto (p(\tilde{u}, \tilde{w}), q(\tilde{u}, \tilde{v}))$ where p and q are constant mean curvature torii in S^3 given by

$$p = (\cos(\tilde{u}) \cos(\tilde{w}), \cos(\tilde{u}) \sin(\tilde{w}), \sin(\tilde{u}) \cos(\tilde{w}), \varepsilon_1 \sin(\tilde{u}) \sin(\tilde{w})), $$
$$q = (\cos(\tilde{u}) \cos(\tilde{v}), \cos(\tilde{u}) \sin(\tilde{v}), \sin(\tilde{u}) \cos(\tilde{v}), \varepsilon_2 \sin(\tilde{u}) \sin(\tilde{v}))d,$$

where d is the unit quaternion given by

$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0 \right)$$
Example 8. Consider the immersion $f : \mathbb{R}^3 \to S^3 \times S^3 : (\tilde{u}, \tilde{v}, \tilde{w}) \mapsto (p(\tilde{u}, \tilde{w}), q(\tilde{u}, \tilde{v}))$ where p and q are constant mean curvature torii in S^3 given by

$$p = (\cos(\tilde{u}) \cos(\tilde{w}), \cos(\tilde{u}) \sin(\tilde{w}), \sin(\tilde{u}) \cos(\tilde{w}), \varepsilon_1 \sin(\tilde{u}) \sin(\tilde{w})),$$

$$q = (\cos(\tilde{u}) \cos(\tilde{v}), \cos(\tilde{u}) \sin(\tilde{v}), \sin(\tilde{u}) \cos(\tilde{v}), \varepsilon_2 \sin(\tilde{u}) \sin(\tilde{v}))d,$$

where d is the unit quaternion given by

$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0\right)$$

Straightforward computations give that u, v, w determined by $\tilde{u} = \frac{\sqrt{3}}{2} u$, $\tilde{v} = \frac{\sqrt{3}}{2} v$ and $\tilde{w} = \frac{\sqrt{3}}{2} w$ are the standard flat coordinates. So it is an immersion of a torus.
Example 8. Consider the immersion $f : \mathbb{R}^3 \to S^3 \times S^3 : (\tilde{u}, \tilde{v}, \tilde{w}) \mapsto (p(\tilde{u}, \tilde{w}), q(\tilde{u}, \tilde{v}))$ where p and q are constant mean curvature torii in S^3 given by

$$p = (\cos(\tilde{u}) \cos(\tilde{w}), \cos(\tilde{u}) \sin(\tilde{w}), \sin(\tilde{u}) \cos(\tilde{w}), \varepsilon_1 \sin(\tilde{u}) \sin(\tilde{w}))),$$

$$q = (\cos(\tilde{u}) \cos(\tilde{v}), \cos(\tilde{u}) \sin(\tilde{v}), \sin(\tilde{u}) \cos(\tilde{v}), \varepsilon_2 \sin(\tilde{u}) \sin(\tilde{v})))d,$$

where d is the unit quaternion given by

$$(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0)$$

Straightforward computations give that u, v, w determined by $\tilde{u} = \frac{\sqrt{3}}{2}u$, $\tilde{v} = \frac{\sqrt{3}}{2}v$ and $\tilde{w} = \frac{\sqrt{3}}{2}w$ are the standard flat coordinates. So it is an immersion of a torus. The angles $2\theta_i$ are again equal to 0, $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$.
Theorem

Let M^3 be a totally geodesic Lagrangian immersion in $S^3 \times S^3$ then M is locally congruent with either

1. $g \mapsto (g, 1)$
2. $g \mapsto (1, g)$
3. $g \mapsto (g, g)$
4. $g \mapsto (g, gi)$
5. $g \mapsto (g^{-1}, gig^{-1})$
6. $g \mapsto (gig^{-1}, g^{-1})$
Lagrangian submanifolds with constant sectional curvature

Theorem

Let M^3 be a totally geodesic Lagrangian immersion in $S^3 \times S^3$ then M is totally geodesic or locally congruent with either

1. $g \mapsto (g_i g^{-1}, g_j g^{-1})$
2. the flat torus described earlier.