Liouville-type theorems for twisted and warped products and their applications

> Stepanov Sergey Finance University under the Government of Russian Federation e-mail: s.e.stepanov@mail.ru

> > XIX Geometrical Seminar August 28-September 4, 2016 Zlatibor, Serbia

Introduction

In the present report we will prove Liouville-type non-existence theorems for complete twisted and warped products of Riemannian manifolds which generalize similar results for compact manifolds (see [PR] and [ON, p. 205-211]). To do this, we will use a generalization of the Bochner technique (see [P]).

[PR] Ponge R., Reckziegel H., Twisted products in pseudo-Riemannian geometry, Geom. Dedic., 48:1 (1993), 15-25.
[ON] O'Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, 1983.
[P] Pigola S., Rigoli M., Setti A.G., Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Birkhäuser Verlag AG, Berlin, 2008.

1. Double-twisted products and twisted products

The double-twisted product $_{\lambda_1}M_1 \times_{\lambda_2} M_2$ of the Riemannian manifolds (M_1, g_1) and (M_2, g_2) is the manifold $M = M_1 \times M_2$ equipped with the Riemannian metric $g = \lambda_1^2 g_1 \oplus \lambda_2^2 g_2$ where the strictly positive functions $\lambda_1 : M_1 \times M_2 \rightarrow \mathbb{R}$ and $\lambda_2 : M_1 \times M_2 \rightarrow \mathbb{R}$ are called twisted functions.

For $\lambda_1 = 1$ and $\lambda_1 = \lambda_2 = 1$ we have the twisted product $M_1 \times_{\lambda_2} M_2$ and the direct product $(M_1 \times M_2, g_1 \oplus g_2)$, respectively. The manifold $_{\lambda_1}M_1 \times_{\lambda_2} M_2$ carries two orthogonal complementary totally umbilical foliations \mathcal{F}_1 and \mathcal{F}_2 with the mean curvature vectors $\xi_1 = -\pi_{2*}(\operatorname{grad} \log \lambda_1)$ and $\xi_2 = -\pi_{1*}(\operatorname{grad} \log \lambda_2)$ for the natural projection $\pi_{i*}: T(M_1 \times M_2) \to TM_i$ (see [S1] and [S2]). We have proved in [S1] and [S2] the following relation

$$div \left(\xi_{1}+\xi_{2}\right) = -s_{\min} + \frac{m-1}{m} \|\xi_{1}\|^{2} + \frac{n-m-1}{n-m} \|\xi_{2}\|^{2} \qquad (*)$$

where $m = \dim \mathcal{F}_1$ and $n - m = \dim \mathcal{F}_2$.

[S1] Stepanov S.E., A class of Riemannian almost-product structures, Soviet Mathematics (Izv. VUZ), 33:7 (1989), 51-59.

[S2] Stepanov S.E., Riemannian almost product manifolds and submersions, Journal of Mathematical Sciences (NY), 99:6 (2000), 1788-1831. In the above formula s_{mix} denotes the mixed scalar curvature of $_{\lambda_1} M_1 \times_{\lambda_2} M_2$ which defined as the scalar function

$$s_{\text{mix}} = \sum_{a=1}^{m} \sum_{\alpha=m+1}^{n} \sec(E_{\alpha}, E_{\alpha})$$

where $\sec(E_a, E_\alpha)$ is the mixed sectional curvature in direction of the two-plane $\pi = \operatorname{span} \{E_a, E_\alpha\}$ for the local orthonormal frames $\{E_1, \dots, E_m\}$ and $\{E_{m+1}, \dots, E_n\}$ tangent to \mathcal{F}_1 and \mathcal{F}_2 (see [R]), respectively.

[R] Rocamora A.H., Some geometric consequences of the Weitzenböck formula on Riemannian almost-product manifolds; weak-harmonic distributions, Illinois Journal of Mathematics, 32:4 (1988), 654-671. We recall here a generalized Green's divergence theorem.

Proposition (see [CSC]; [C]). Let *X* be a smooth vector field on a connected complete and oriented Riemannian manifold (M, g), such that the norm $||X|| \in L^1(M, g)$. If $div X \ge 0$ (or $div X \le 0$) everywhere on (M, g), then div X = 0.

[CSC] Caminha A., Souza P., Camargo F., Complete foliations of space forms by hypersufaces, Bull. Braz. Math. Soc., New Series, 41:3 (2010), 339-353.
 [C] Caminha A., The geometry of closed conformal vector fields on Riemannian spaces, Bull. Braz. Math. Soc., New Series, 42:2 (2011), 277-300.

At the same time, for $s_{\min} \le 0$ from the above formula we obtain $div \ (\xi_1 + \xi_2) \ge 0.$

If we assume that $_{\lambda_1}M_1 \times_{\lambda_2} M_2$ is a connected complete and ori-

ented manifold and $\|\xi_1 + \xi_2\| \in L^1(M,g)$ then

 $div \left(\xi_1 + \xi_2\right) = 0$

by the above proposition. In this case, from the above formula we obtain the equalities $\xi_1 = \xi_2 = 0$.

Then the following Liouville-type non-existence theorem holds. It generalizes a similar theorem for compact double-twisted products Riemannian manifolds (see [NR]). **Theorem 1.** Let $_{\lambda_1} M_1 \times_{\lambda_2} M_2$ be a connected complete and oriented double-twisted product of some Riemannian manifolds (M_1, g_1) and (M_2, g_2) . If its mixed scalar curvature s_{mix} is nonpositive and

$$\|\pi_{2*}(\operatorname{grad} \log \lambda_1) + \pi_{1*}(\operatorname{grad} \log \lambda_2)\| \in L^1(M,g),$$

then the twisted functions λ_1 and λ_2 are positive constants C_1 and C_2 , respectively, and therefore, (M, g) is the direct product $(M_1 \times M_2, \overline{g}_1 \oplus \overline{g}_2)$ for $\overline{g}_1 = C_1^2 g_1$ and $\overline{g}_1 = C_2^2 g_2$.

[NR] Naveira A.M., Rocamora A.H., A geometrical obstruction to the existence of two totally umbilical complementary foliations in compact manifolds, Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics 1139 (1985), 263-279. If $_{\lambda_1} M_1 \times_{\lambda_2} M_2$ is a Cartan-Hadamard manifold (see [P, p. 90]), i.e. a complete, noncompact simply connected Riemannian manifold of nonpositive sectional curvature, then we have **Corollary 1.** If a Cartan-Hadamard manifold (M, g) is a doubly twisted product $_{\lambda_1} M_1 \times_{\lambda_2} M_2$ such that

 $\|\pi_{2*}(\operatorname{grad} \log \lambda_1) + \pi_{1*}(\operatorname{grad} \log \lambda_2)\| \in L^1(M,g),$

then the twisted functions λ_1 and λ_2 are positive constants C_1 and

 C_2 , respectively, and therefore, (M, g) is the direct product $(M_1 \times M_2, \overline{g}_1 \oplus \overline{g}_2)$ for $\overline{g}_1 = C_1^2 g_1$ and $\overline{g}_1 = C_2^2 g_2$.

For a twisted product $M_1 \times_{\lambda_2} M_2$ the foliation \mathcal{F}_1 is totally geodesic and therefore, the following theorem is a corollary of the theorem in [BW] where consider complete Riemannian manifold with two orthogonal complementary foliations one of which has a totally geodesic and geodesically complete leaves.

Theorem 2. If a twisted product $M_1 \times_{\lambda_2} M_2$ is a complete and simply connected Riemannian manifold and its mixed sectional curvature is nonnegative then it is isometric to a direct product $M_1 \times M_2$.

[BW] Brito F., Walczak P.G., Totally geodesic foliations with integrable normal bundles, Bol. Soc. Bras. Mat., 17:1 (1986), 41-46.

2. Twisted products and projective submersions

Let (M, g) and $(\overline{M}, \overline{g})$ be Riemannian manifolds of dimension nand m such that n > m. A surjective map $f: (M,g) \rightarrow (\overline{M}, \overline{g})$ is a projective submersion if it has maximal rank m at any point x of Mand if for an arbitrary geodesic γ in (M, g) its image $f(\gamma)$ is a geodesic in $(\overline{M}, \overline{g})$ too (see [S2]).

If $f:(M,g) \to (\overline{M},\overline{g})$ is a projective submersion then (M, g) carries two orthogonal complementary totally geodesic and totally umbilical foliations *Ker* f_* and $(Ker f_*)^{\perp}$, respectively (see [S2]).

[S2] Stepanov S.E., Riemannian almost product manifolds and submersions, Journal of Mathematical Sciences (NY), 99:6 (2000), 1788-1831. So, if $f:(M,g) \to (\overline{M},\overline{g})$ is a projective submersion then (M, g) is a locally isometric to a twisted product $M_1 \times_{\lambda_2} M_2$. The converse is also true (see [S3]).

Theorem 3. Let $M_1 \times_{\lambda_2} M_2$ be a twisted product of some Riemannian manifolds (M_1, g_1) and (M_2, g_2) . Then the natural projection $\pi_2 : M_1 \times M_2 \to M_2$ is a local projective submersion from $M_1 \times_{\lambda_2} M_2$ to (M_2, \overline{g}_2) for $\overline{g}_2 = \lambda_2^2 g_2$.

[S3] Stepanov S.E., On the global theory of projective mappings, Mathematical Notes, 58:1 (1995), 752-756. Then the following theorem is a corollary of our Theorem 2.

Theorem 3. Let (M, g) is a simply connected complete Riemannian manifold and $f:(M,g) \rightarrow (\overline{M},\overline{g})$ be a projective submersion onto another *m*-dimensional (m < n) Riemannian manifold ($\overline{M}, \overline{g}$). If the foliations Ker f_* has geodesically complete leaves, then (M, g) is isometric to a twisted product $M_1 \times_{\lambda} M_2$ such that the leaves of Ker f_* and $(Ker f_*)^{\perp}$ correspond to the canonical foliations of $M_1 \times M_2$.

Another statement follows directly from our Theorem 1.

Corollary 2. Let (M, g) be an *n*-dimensional complete and simply connected Riemannian manifold with non-negative sectional curvature. If (M, g) admits a projective submersion $f: (M, g) \rightarrow (\overline{M}, \overline{g})$ onto another *m*-dimensional (m < n) Riemannian manifold $(\overline{M}, \overline{g})$. then it is isometric to a direct product $(M_1 \times M_2, g_1 \oplus g_2)$ of some Riemannian manifolds (M_1, g_2) and (M_1, g_2) .

3. Double warped products and warped products

A double-warped product manifold (M, g) is a double-twisted product manifold $_{\lambda_1}M_1 \times_{\lambda_2} M_2$ where $\lambda_1 : M_2 \to \mathbb{R}$ and $\lambda_2 : M_1 \to$

 \mathbb{R} are positive smooth functions (see [U]).

In this case, the mean curvature vectors of the orthogonal complementary foliations \mathcal{F}_1 and \mathcal{F}_2 have the forms

$$\xi_1 = -grad \log \lambda_1$$
 and $\xi_2 = -grad \log \lambda_2$.

[U] Ünal B., Doubly warped products, Differential Geometry and its Applications, 15 (2001), 253-263. Then the formula (*) can be rewriten in the form

$$\Delta \log(\lambda_1 \lambda_2) = -s_{\min} + \frac{m-1}{m} \| \operatorname{grad} \log \lambda_1 \|^2 + \frac{m-1}{n-m} \| \operatorname{grad} \log \lambda_2 \|^2.$$

Therefore, if $s_{\text{mix}} \le 0$ then from the above formula we obtain $\Delta \log(\lambda_1 \lambda_2) \ge 0$, i.e. $\log(\lambda_1 \lambda_2)$ is a subharmonic function.

We recall that on a complete Riemannian manifold (M, g) each subharmonic function $f: M \to \mathbb{R}$ whose gradient has integrable

norm on (*M*, *g*) must actually be harmonic, i.e. $\Delta f = 0$ (see [Y]).

[Y] Yau S.T., Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. Then we conclude that the following theorem holds..

Theorem 3. Let (M, g) be a complete double-warped product $\lambda_1 M_1 \times \lambda_2 M_2$ of (M_1, g_1) and (M_2, g_2) such that $s_{\text{mix}} \leq 0$. If the gradient of $\log(\lambda_1 \lambda_2)$ has integrable norm, then $\lambda_1 = C_1$ and $\lambda_2 = C_2$ for some positive constants C_1 and C_2 and therefore, (M, g) is a direct product of (M_1, \overline{g}_1) and (M_2, \overline{g}_2) for $\overline{g}_i = C_i g_i$. Theorem 3 complements the result of [GO] where was proved that if $s_{\text{mix}} \ge 0$ of a complete double-warped product $\lambda_1 M_1 \times \lambda_2 M_2$ then λ_1 and λ_2 are constants.

[GO] Gutierrez M., Olea B., Semi-Riemannian manifolds with a doubly warped structure, Revista Matematica Iberoamericana, 28:1 (2012), 1-24.

The manifold $M_1 \times_{\lambda_2} M_2$ with a smooth positive function $\lambda_2 : M_1 \to \mathbb{R}$ is called a warped product (see [ON, p. 206]). In this case, the well known curvature identity holds (see [ON, p. 211])

$$\pi_1^* \operatorname{Ric} = \operatorname{Ric}_1 - \frac{n-m}{\lambda_2} \operatorname{Hess}(\lambda_2).$$

From this identity we obtain

$$\Delta_1 \lambda_2 = \frac{1}{n-m} \lambda_2 \left(s_1 - trace_{g_1} \left(\pi_1^* Ric \right) \right)$$

where
$$trace_{g_1} \pi_1^* Ric = \sum_{a=1}^m Ric(E_a, E_a)$$
.

[ON] O'Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, 1983.

If we assume that $s_1 \ge trace_{g_1} \pi_1^* Ric$ then from the above formula we obtain $\Delta_1 \lambda_2 \ge 0$ and therefore, $\lambda_2 : M_1 \to \mathbb{R}$ is a subharmonic non-negative function.

It is well known that Yau showed in [Y] that every non-negative L^p -subharmonic function on a complete Riemannian manifold must be constant for any p > 1.

Summarizing the above arguments we can formulate the theorem.

[Y] Yau S.T., Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. **Theorem 4.** Let (M, g) be a warped product $M_1 \times_{\lambda_2} M_2$ of two Riemannian manifolds (M_1, g_1) and (M_2, g_2) such that (M_1, g_1) is a complete manifold and $s_1 \ge trace_{g_1} \pi_1^* Ric$ for the scalar curvature s_1 of (M_1, g_1) and for the Ricci tensor Ric of $M_1 \times_{\lambda_2} M_2$. If $\int_{M_1} \lambda_2^p dV_{g_1} < \infty$ for some p > 1 then $\lambda_2 = C_2$ for some positive constant C_2 and therefore, (M, g) is the direct product $M_1 \times M_2$ of (M_1, g_1) and (M_2, \overline{g}_2) for $\overline{g}_2 = C_2 g_2$.

If the warped product $M_1 \times_{\lambda_2} M_2$ is an *n*-dimensional ($n \ge 3$) Einstein manifold, i.e. $Ric = \frac{s}{n}g$ for the constant scalar curvature *s* of $M_1 \times_{\lambda_2} M_2$, then

$$\Delta_1 \lambda_2 = \frac{1}{n-m} \lambda_2 \left(s_1 - \frac{m}{n} s \right).$$

In this case, we can formulate a generalization of the main theorem on an Einstein warped product with compact M_1 from the paper [KK].

[KK] Kim D.-S., Kim Y.H., Compact Einstein warped product spaces with nonpositive scalar curvature, Proceedings of the American Mathematical Society, 131:8 (2003), 2573-2576. **Corollary 4.** Let $M_1 \times_{\lambda_2} M_2$ be an n-dimensional ($n \ge 3$) Einstein warped product of two Riemannian manifolds (M_1, g_1) and (M_2, g_2) such that (M_1, g_1) is an m-dimensional complete mani-

fold and $s_1 \ge \frac{m}{n}s$ for the scalar curvature s_1 of (M_1, g_1) and for the

constant scalar curvature s of $M_1 \times_{\lambda_2} M_2$. If $\int_{M_1} \lambda_2^p dV_{g_1} < \infty$ for

some $p \neq 1$ then $s_1 = \frac{m}{n}s = constant$ and $\lambda_2 = C_2$ for some positive

constant C_2 and therefore, (M, g) is the direct product $M_1 \times M_2$ of (M_1, g_1) and (M_2, \overline{g}_2) for $\overline{g}_2 = C_2 g_2$.

Thanks a lot for your attention!