Marian Ioan MUNTEANU

Al.I.Cuza University of Iasi, Romania webpage: http://www.math.uaic.ro/~munteanu

XIX GEOMETRICAL SEMINAR Zlatibor, Serbia, August 28-September 4, 2016

A > + = + + =

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

History

2012 (Zlatibor): Killing magnetic trajectories in 3-dimensional Riemannian manifolds

2014 (Vrnjačka Banja): On some periodic magnetic curves

History

2012 (Zlatibor): Killing magnetic trajectories in 3-dimensional Riemannian manifolds

2014 (Vrnjačka Banja): On some periodic magnetic curves

2016 (Zlatibor): magnetic trajectories \longrightarrow magnetic maps

This talk is based on two papers written in collaboration with Jun-ichi Inoguchi (Japan).

Background

(M, g) (dim $M = n \ge 2$)

magnetic field: F - closed 2-form on M

Lorentz force Φ : $g(\Phi(X), Y) = F(X, Y)$, X, Y tangent to M

3

イロト 不得 トイヨト イヨト

Background

A smooth curve γ in (M, g, F) is called

a flowline of the dynamical system associated with *F* or simply:

magnetic curve of (M, g, F)

if its velocity vector field γ' satisfies the Lorentz equation:

$$abla_{\gamma'}\gamma'=\Phi(\gamma')$$

Marian Ioan MUNTEANU (UAIC)

Magnetic curves vs. geodesics

- For trivial magnetic field F = 0 (the magnetic field is absent) magnetic curves correspond to geodesics of (M, g).
- Geodesics are characterized as critical points of the energy action.

Magnetic curves of (M, g, F) can be also viewed (at least locally) as the solutions of a variational principle.

- The existence and uniqueness of geodesics remain true for magnetic curves.
- Property for magnetic curves: $\frac{d}{dt}g(\gamma', \gamma') = 0$. In particular, a magnetic curve is called normal if it has unit energy, i.e. $||\gamma'|| = 1$.

Geodesics

... are given by a second order nonlinear differential equation: **Euler-Lagrange equation of motions**.

More precisely, a *geodesic* γ in a Riemannian manifold (M, g) is characterized as critical point of the **kinetic energy** (also called the **action integral**)

$${\sf E}(\gamma)=\int {1\over 2}|\gamma'(s)|^2~ds$$

(日)

Harmonic maps

The notion of geodesic is generalized to maps between Riemannian manifolds.

A map $f: (N, h) \rightarrow (M, g)$ between Riemannian manifolds is said to be **harmonic** if it is a critical point of the energy functional:

$$E(f) = \int_N \frac{1}{2} |df|^2 dv_h$$

under compactly supported variations. The Euler-Lagrange equation of this variational problem is given by

 $\tau(f) = \operatorname{div} df.$

Here $\tau(f)$ is called the tension field of f.

・ロト ・ 四ト ・ ヨト ・ ヨト …

A special case: *F* is an exact 2-form, namely, there exists a 1-form ω , usually called the **potential 1-form**, such that $F = d\omega$.

For a curve $\gamma : [a, b] \longrightarrow M$ consider the functional

$$LH(\gamma) = \int\limits_{a}^{b} \left(rac{1}{2} \langle \gamma'(t), \gamma'(t)
angle + \omega(\gamma'(t))
ight) dt.$$

It is often called the **Landau Hall functional** for the curve γ with the potential 1-form ω .

Marian Ioan MUNTEANU (UAIC)

< ロ > < 同 > < 回 > < 回 >

Consider a variation of γ :

 $\Gamma : [\mathbf{a}, \mathbf{b}] \times (-\upsilon, \upsilon) \longrightarrow \mathbf{M}, \quad \Gamma(t, \mathbf{0}) = \gamma(t)$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Consider a variation of γ :

 $\Gamma : [\mathbf{a}, \mathbf{b}] \times (-\upsilon, \upsilon) \longrightarrow \mathbf{M}, \quad \Gamma(t, \mathbf{0}) = \gamma(t)$

Simplify the notations: $\gamma_{\epsilon} : [a, b] \longrightarrow M, \gamma_{\epsilon}(t) = \Gamma(t, \epsilon)$

The variation vector on γ : $V = \frac{\partial \gamma_{\epsilon}}{\partial \epsilon} : [a, b] \longrightarrow M$, that is V(a) = V(b) = 0.

In order to find the critical points of the functional LH we compute:

$$\left.\frac{d}{d\epsilon}LH(\gamma_{\epsilon})\right|_{\epsilon=0} = -\int_{a}^{b}g(\nabla_{\gamma'}\gamma' - \phi(\gamma'), V)dt.$$

In order to find the critical points of the functional LH we compute:

$$\left.\frac{d}{d\epsilon}LH(\gamma_{\epsilon})\right|_{\epsilon=0} = -\int_{a}^{b} g(\nabla_{\gamma'}\gamma' - \phi(\gamma'), V) dt.$$

The critical points of the LH functional are solutions of the equation $\frac{d}{d\epsilon}LH(\gamma_{\epsilon})|_{\epsilon=0} = 0$ which is equivalent to the Lorentz equation.

Marian Ioan MUNTEANU (UAIC)

The Landau Hall functional for maps

Let $f : N \longrightarrow M$ be a smooth maps between two Riemannian manifolds (N, h) of dimension n and (M, g) of dimension m.

Let ξ be a global vector field on N and ω be a 1-form on M.

The energy of *f* is $E(f) = \frac{1}{2} \int_{N} |df|^2 dv_h$.

・ロト ・ 四ト ・ ヨト ・ ヨト

The Landau Hall functional for maps

Let $f : N \longrightarrow M$ be a smooth maps between two Riemannian manifolds (N, h) of dimension n and (M, g) of dimension m.

Let ξ be a global vector field on N and ω be a 1-form on M.

The energy of f is $E(f) = \frac{1}{2} \int_{N} |df|^2 dv_h.$

Let us define the following functional for f associated to ξ and ω

$$LH(f) = E(f) + \int_N \omega(df(\xi)) dv_h.$$

Marian Ioan MUNTEANU (UAIC)

First variation for the Landau Hall functional

A smooth variation $\{\mathcal{F}_{\epsilon}\}$ of f means a smooth map $\mathcal{F} : \mathbb{N} \times \mathbb{I} \longrightarrow \mathbb{M}$, such that $\mathcal{F}(p, 0) = f(p)$. For the sake of simplicity we use to write $f_{\epsilon}(p) = \mathcal{F}(p, \epsilon)$.

・ロト ・ 四ト ・ ヨト ・ ヨト

First variation for the Landau Hall functional

A smooth variation $\{\mathcal{F}_{\epsilon}\}$ of f means a smooth map $\mathcal{F} : \mathbb{N} \times I \longrightarrow \mathbb{M}$, such that $\mathcal{F}(p, 0) = f(p)$. For the sake of simplicity we use to write $f_{\epsilon}(p) = \mathcal{F}(p, \epsilon)$.

Definition. The map f is called **magnetic** with respect to ξ and ω if it is a critical point of the Landau Hall integral defined above, i.e. the first variation

 $\left. \frac{d}{d\epsilon} LH(f_{\epsilon}) \right|_{\epsilon=0}$

is zero.

Theorem (Inoguchi, M. - 2014)

Let $f: (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then f satisfies the Lorentz equation

$$\tau(f) = \phi(f_*\xi).$$

Theorem (Inoguchi, M. - 2014)

Let $f : (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then f satisfies the Lorentz equation

$$\tau(f) = \phi(f_*\xi).$$

Sometimes, this equation will be called the magnetic equation.

Marian Ioan MUNTEANU (UAIC)

Theorem (Inoguchi, M. - 2014)

Let $f : (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then f satisfies the Lorentz equation

$$au(f) \;=\; \phi(f_*\xi).$$

Sometimes, this equation will be called the magnetic equation.

Remark (remove assumptions)

A magnetic map is defined without assumptions *N* compact and *F* exact.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 10 / 24

(日)

Examples of magnetic maps

• A constant map $f : N \longrightarrow M$ is magnetic with respect to any $\xi \in \chi(N)$ and any closed 2-form F on M.

Examples of magnetic maps

2 Let N = [a, b], and *t* be the parameter on *N*. Take $h = dt^2$ and $\xi = \frac{d}{dt}$. If *F* is a magnetic field on *M* and γ a magnetic curve on *M* corresponding to *F*, then γ is a magnetic map associated to ξ and *F*. This allows us to say that **magnetic maps extend magnetic curves**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples of magnetic maps

Solution In the absence of a magnetic field the magnetic equation becomes $\tau(f) = 0$; hence *f* is a harmonic map. Therefore one may say that **magnetic maps extend harmonic maps**.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 11 / 24

Isometric immersions

Let $f: (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds N and M.

・ロト ・ 四ト ・ ヨト ・ ヨト

Isometric immersions

Let $f: (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds *N* and *M*. Then, the tension field $\tau(f) = n\mathbf{H}$, where **H** is the mean curvature vector field of *N* in *M*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isometric immersions

Let $f: (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds N and M. Then, the tension field $\tau(f) = nH$, where **H** is the mean curvature vector field of N in M. We have the following

Proposition (new form of the magnetic equation)

If ξ is a global vector field on *N* and ϕ is a Lorentz force on *M*, then *f* is magnetic if and only if

$$\mathbf{H}=\frac{1}{n}\,\phi(f_*\xi).$$

Composition

It is known that the composition of two harmonic maps is **not**, in general a harmonic map. Yet, if

 $\psi : (N, h) \longrightarrow (M, g)$ is a harmonic map and

 $f: (M,g) \longrightarrow (\widetilde{M},\widetilde{g})$ is totally geodesic,

then $f \circ \psi$ is harmonic.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Composition

1. Let $f: (M, g) \longrightarrow (\widetilde{M}, \widetilde{g})$ be a **totally geodesic** submanifold. Let ξ be a vector field on M and let F be a magnetic field on \widetilde{M} . Suppose that f is a **magnetic map** with respect to ξ and F.

If γ is an **integral curve** of ξ such that

 $\tilde{\gamma} = \mathbf{f} \circ \boldsymbol{\gamma}$ is a **normal magnetic curve** for \mathbf{F} ,

then γ is a **geodesic**.

2. Let $f: (M,g) \longrightarrow (\widetilde{M},\widetilde{g})$ be a **totally umbilical** submanifold, namely $\sigma(X, Y) = g(X, Y)H$. Let ξ be a vector field on M such that its **integral** curves are geodesics and let F be a magnetic field on \widetilde{M} .

Suppose that *f* is a **magnetic map** with respect to ξ and *F*.

If γ is an integral curve of ξ ,

then $f \circ \gamma$ is a magnetic curve for $\frac{1}{n}F$, where $n = \dim M$.

Magnetic maps to Euclidean spaces

Let $f : N \longrightarrow \mathbb{E}^m$ be a smooth map from the Riemannian manifold (N, h) to the Euclidean space \mathbb{E}^m . If (f^1, \ldots, f^m) are the components of the map f and if ϕ is a Lorentz force on \mathbb{E}^m , then the Lorentz equation can be written as

$$(\Delta f^1,\ldots,\Delta f^m)=\phi(f_*\xi)$$

where Δ denotes the Beltrami-Laplace operator on functions on *N*, namely

$$\Delta f^{\alpha} = \sum_{i=1}^{n} \left(\boldsymbol{e}_{i} \boldsymbol{e}_{i}(f^{\alpha}) - ({}^{h} \nabla_{\boldsymbol{e}_{i}} \boldsymbol{e}_{i})(f^{\alpha}) \right)$$

for any $\alpha = 1, ..., m$, where $\{e_i\}_{i=1,...,n}$ is an orthonormal basis on *N*.

イロト 不得 トイヨト イヨト

Example 1.

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold. The identity map $\mathbf{1}_M : M \longrightarrow M$ is a magnetic map with respect to ξ and $F = d\eta$ if and only if

 $\iota_{\xi} d\eta = 0.$

Marian Ioan MUNTEANU (UAIC)

< 日 > < 同 > < 回 > < 回 > < 回 > <

Example 2.

Let $f: M_1 \longrightarrow M_2$ be a φ -holomorphic map between almost contact metric manifolds.

Theorem. [S. lanuş, A.M. Pastore - Ann. Math. Blaise Pascal, 1995] Any φ -holomorphic map between contact metric manifolds is a harmonic map.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 16 / 24

イロト 不得 トイヨト イヨト

Example 2.

Let $f: M_1 \longrightarrow M_2$ be a φ -holomorphic map between almost contact metric manifolds.

Suppose that the fundamental 2-form Ω_2 is closed.

Then *f* is a magnetic map with respect to ξ_1 and a magnetic field $F = q\Omega_2$ if and only if *f* is a harmonic map.

Example 3.

Let (N, h) be a Riemannian manifold and ξ be a *regular* vector field on N, i.e. the action of its 1-parameter group (of isometries) on N is simply transitive. Denote by $M = N/\xi$ the orbit space. Then, the projection $\pi : N \longrightarrow M$ is a magnetic map (w.r.t. ξ and arbitrary magnetic field F on M) if and only if π is a harmonic map.

(日)

Tangent bundle of a Riemannian manifold

(M, g) a Riemannian manifold of dimension n $\pi: T(M) \longrightarrow M$ its tangent bundle Decomposition of $T_{u}T(M)$:

 $T_{\mathfrak{u}}T(M) = V_{\mathfrak{u}}T(M) \oplus H_{\mathfrak{u}}T(M)$

where $V_{\mathfrak{u}}T(M) = \ker \pi_{*,\mathfrak{u}}$ is the vertical space and $H_{\mathfrak{u}}T(M)$ is the horizontal space in \mathfrak{u} obtained by using ∇

< 日 > < 同 > < 回 > < 回 > < 回 > <

Tangent bundle of a Riemannian manifold

We have:

- the horizontal distribution *HTM* the vertical distribution *VTM*
- the direct sum decomposition

 $TTM = HTM \oplus VTM$

If $X \in \mathfrak{X}(M)$, denote by

 X^H the horizontal lift X^V the vertical lift

of X to T(M).

< 回 > < 三 > < 三 >

Tangent bundle of a Riemannian manifold

Sasaki metric:

$$g_{\mathcal{S}}(X^H, Y^H) = g_{\mathcal{S}}(X^V, Y^V) = g(X, Y) \circ \pi, \ g_{\mathcal{S}}(X^H, Y^V) = 0$$

an almost complex structure:

$$J_{\mathcal{S}}X^{\mathcal{H}} = X^{\mathcal{V}}, \ J_{\mathcal{S}}X^{\mathcal{V}} = -X^{\mathcal{H}}, \text{ for all } X \in \mathfrak{X}(M)$$

Classical result: $(T(M), g_S, J_S)$ is an almost Käherian manifold.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 18 / 24

Tangent bundle of a Riemannian manifold

Classical result: $(T(M), g_S, J_S)$ is an almost Käherian manifold.

Hence, the Kähler 2-form $\Omega_S = g_S(J_S \cdot, \cdot)$ may be considered as a magnetic field on T(M).

< 日 > < 同 > < 回 > < 回 > < □ > <

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$. Compute the differential of this map: $\xi_{*,p} : T_pM \longrightarrow T_{(p,\xi(p))}T(M)$.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 19 / 24

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$.

Compute the differential of this map: $\xi_{*,\rho}: T_{\rho}M \longrightarrow T_{(\rho,\xi(\rho))}T(M)$.

$$\xi_{*,\rho}X(\rho) = X^H_{\xi(\rho)} + (\nabla_X\xi)^V_{\xi(\rho)}$$

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 19 / 24

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$.

Compute the differential of this map: $\xi_{*,p} : T_p M \longrightarrow T_{(p,\xi(p))} T(M)$.

$$\xi_{*,p}X(p) = X_{\xi(p)}^H + (\nabla_X\xi)_{\xi(p)}^V$$

Well known result:

The map $\xi : (M, g) \longrightarrow (T(M), g_S)$ is an isometric immersion if and only if $\nabla \xi = 0$.

Marian Ioan MUNTEANU (UAIC)

Compact case:

the energy of ξ on M is

$$E(\xi) = \frac{n}{2}\operatorname{vol}(M) + \frac{1}{2}\int_{M} ||\nabla\xi||_{g}^{2}dv_{g},$$

The number

$$\mathcal{B}(\xi) = \int_{M} ||\nabla \xi||_{g}^{2} dv_{g}$$

is called the *total bending* of the vector field ξ .

Result. $\xi : (M, g) \longrightarrow (T(M), g_S)$ is harmonic if and only if ξ is parallel. In such a case it is an absolute minimum of the energy functional $E(\xi)$.

Marian Ioan MUNTEANU (UAIC)

Arbitrary case:

$$\tau(\xi) = -\left\{\left(\operatorname{trace}_{g} R(\nabla_{\bullet}\xi,\xi)\bullet\right)^{H} + (\Delta_{g}\xi)^{V}\right\} \circ \xi$$

 Δ_g denotes the rough Laplacian on vector fields:

$$\Delta_g X = -\sum_{k=1}^n \left[\nabla_{e_k} \nabla_{e_k} X - \nabla_{\nabla_{e_k} e_k} X \right],$$

Marian Ioan MUNTEANU (UAIC)

Zlatibor: September 3, 2016 20 / 24

Theorem (Inoguchi, M.)

Let (M, g) be a Riemannian manifold and $(T(M), g_S, J_S)$ its tangent bundle endowed with the usual almost Kählerian structure.

Let ξ be a vector field on *M*.

Then ξ is a magnetic map with strength q associated to ξ itself and the Kähler magnetic field Ω_S if and only if the following conditions hold:

$$\begin{array}{ll} (*) & \operatorname{trace}_{g} R(\nabla_{\bullet} \xi, \xi) \bullet) = q \; \nabla_{\xi} \xi \\ (**) & \Delta_{g} \xi = -q \; \xi. \end{array}$$

Proof.

The magnetic equation with strength *q*:

$$\tau(\xi) = q J_S(\xi_*\xi), \ q \in \mathbb{R}.$$

We compute

$$J_{\mathcal{S}}(\xi_*\xi) = \xi^V - (\nabla_{\xi}\xi)^H.$$

Identify the vertical and the horizontal parts, respectively.

Marian I	loan l	MUNT	EANU	(UAIC)
----------	--------	------	------	--------

Interesting results may be obtained in cases when the curvature tensor has a certain expression.

1. *M* is of constant sectional curvature *c*:

R(X, Y)Z = c(g(Y, Z)X - g(X, Z)Y), for all $X, Y, Z \in \mathfrak{X}(M)$

We obtain:

trace_g
$$R(\nabla_{\bullet}\xi,\xi)\bullet = c[\nabla_{\xi}\xi - (\operatorname{div}\xi)\xi).$$

Marian Ioan MUNTEANU (UAIC)

3

イロト 不得 トイヨト イヨト

(*) becomes

$$(\boldsymbol{c}-\boldsymbol{q})\nabla_{\xi}\xi-\boldsymbol{c}(\operatorname{div}\xi)\xi=\boldsymbol{0}.$$

(i) If *c* = 0, that is *M* is flat, it follows that ξ is self-parallel.
(ii) If *c* ≠ 0, then we have

$$\left(1-\frac{q}{c}\right)
abla_{\xi}\xi = (\operatorname{div}\,\xi)\xi$$

Hence, for q = c, the vector field ξ is divergence free.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 22 / 24

2.
$$M = M(c)$$
 is a Sasakian space form

$$R(X, Y)Z = \frac{c+3}{4} (g(Y, Z)X - g(X, Z)Y) + \frac{c-1}{4} (\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X, Z)\eta(Y)\xi - g(Y, Z)\eta(X)\xi + g(Z, \varphi Y)\varphi X - g(Z, \varphi X)\varphi Y + 2g(X, \varphi Y)\varphi Z)$$

э

- (*) is automatically satisfied.
- For (**) compute:

 $\Delta_g \xi = 2n\xi$

Proposition (Inoguchi, M.)

The vector field ξ is magnetic with the strength q = -2n.

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 22 / 24

- INOGUCHI J. AND MUNTEANU M.I., *Magnetic maps*, Int. J. Geom. Methods Mod. Phys. **11** 6 (2014), art. 1450058, (22 pages).
- [2] INOGUCHI J. AND MUNTEANU M.I., *New examples of magnetic maps involving tangent bundles,* Rendiconti Sem Matematico (Universita e Politecnico di Torino), (accepted).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Marian Ioan MUNTEANU (UAIC)

Т

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

Τh

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

æ

Tha

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

-2

ヘロン 人間と 人間と 人間と

Than

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

-2

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

-2

Thank y

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

-2

Thank yo

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

-2

ヘロト ヘロト ヘヨト ヘヨト

Thank you f

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

ヘロト ヘロト ヘヨト ヘヨト

Thank you fo

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank for y o u

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24/24

・ロト ・ 四ト ・ ヨト ・ ヨト

Thank you for a

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for at

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for att

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for atte

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for atten

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for attent

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for attenti

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for attentio

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

2

Thank you for attention

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

э

Thank you for attention!

Marian Ioan MUNTEANU (UAIC)

Magnetic maps

Zlatibor: September 3, 2016 24 / 24

э