Angular billiard and algebraic Birkhoff conjecture

Andrey Mironov Sobolev Institute of Mathematics, Novosibirsk

based on joint works with Michael Bialy, Tel Aviv University

XIX Geometrical Seminar 2016, Zlatibor

Theorem. (M. Bialy and A.M., 2015) Let Γ be the dual curve to γ . Suppose that Birkhoff billiard admits a polynomial integral. Then, either $\tilde{\Gamma}$ has degree 2, or $\tilde{\Gamma}$ necessarily contains singular points. Moreover, all singular and inflection points of $\tilde{\Gamma}$ in $\mathbb{C}P^2$ belong to the Absolute $\Lambda = \{x^2 + y^2 = 0\}.$

Corollary 1. If the Birkhoff billiard inside γ is integrable with an integral which is polynomial in v, then $\tilde{\gamma}$ does not have two real algebraic ovals having a common tangent line.

Indeed, if there were two such ovals γ and γ_1 (see Fig. 1), then the point (x, y) on Γ dual to the common tangent line τ would be a real singular point of Γ different from O, and hence $x^2 + y^2 \neq 0$. It then follows from Theorem 1 that the Birkhoff billiard inside γ does not admit polynomial integral on the energy level |v| = 1.

Example: Consider real algebraic curve

$$y^2 = F(x) = (x-x_1)(x-x_2)(x-x_3)(x-x_4)f(x), \quad x_j \in \mathbb{R}, \quad x_1 < x_2 < x_3 < x_4,$$

where $f(x)$ is a real polynomial such that $F(x) > 0$ for $x \in (x_1, x_2)$ and
 $x \in (x_3, x_4)$. Then Corollary 1 applies with

$$\gamma = \{(x, \pm \sqrt{F(x)}), x \in [x_1, x_2]\}, \gamma_1 = \{(x, \pm \sqrt{F(x)}), x \in [x_3, x_4]\}.$$

Moreover, since the algebraic curve $\tilde{\gamma} \subset \mathbb{C}P^2$ is always singular, then Theorem by Bolotin does not apply. **Corollary 2.** Assume that $\tilde{\Gamma}$ is a non-singular curve (of degree > 2) in $\mathbb{C}P^2$ and has a smooth real oval Γ (for example, $\tilde{\Gamma}$ is a nonsingular cubic). Then the dual curve γ is also an oval and Birkhoff billiard inside γ is not integrable by Theorem 1. Notice, that in this case Bolotin's theorem does not apply, since $\tilde{\gamma}$ is necessarily singular in this case. The inflection points of $\tilde{\Gamma}$ correspond to singular points of $\tilde{\gamma}$. **Corollary 3.** Let γ be the dual of Fermat oval $\Gamma = \{x^{2n} + y^{2n} = 1, n > 1\}$. Notice that $\tilde{\Gamma}$ is irreducible, non-singular curve and so by Theorem 1 the Birkhoff billiard inside γ is not integrable. One can easily compute that in this case the oval γ can be written as follows:

$$\gamma = \{x^{\frac{2n}{2n-1}} + y^{\frac{2n}{2n-1}} = 1\}.$$

Therefore (the algebraic curve) γ is a strictly convex C^1 curve in the plane which has 4 singular points $(\pm 1, 0), (0, \pm 1)$ corresponding to 4 inflection points $(\pm 1, 0), (0, \pm 1)$ of Γ . So Bolotin's theorem does not apply in this case also.

Theorem. (M. Bialy and A.M., 2016) If the Birkhoff billiard inside γ admits polynomial integral of degree 4 in v_1, v_2 , then γ is an ellipse.

We shall call the Angular billiard *integrable* if there is a function G: $U \setminus S \to \mathbb{R}$ such that

$$G(A) = G(\mathcal{A}(A)), \quad \forall A \in U \setminus \mathcal{S}.$$

Example 1 Let Γ be an ellipse defined by the equation

$$F = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0, \ G(x, y) = \frac{F(x, y)}{(x - x_0)^2 + (y - y_0)^2}.$$

Here $O(x_0, y_0)$ is arbitrary point inside Γ, G is the integral.

Suppose that the Birkhoff billiard flow admits a polynomial integral Φ . One can assume that $\Phi(q, v)$ is a *homogeneous* polynomial of a certain *even* degree n in $\sigma(v) = xv_y - yv_x$, v_x, v_y :

$$\Phi = \Phi(\sigma, v_x, v_y).$$

And moreover, Φ vanishes on tangent vectors to γ .

Theorem. Let γ be a convex closed curve and $\Phi(\sigma, v_x, v_y)$ be a homogeneous polynomial integral of even degree n, vanishing on the tangent vectors to the boundary γ . Then the Angular billiard corresponding to Γ is also integrable with the integral of the form

$$G_1(x,y) = \frac{F_1(x,y)}{(\sqrt{x^2 + y^2})^n}, \qquad F_1(x,y) = \Phi(1,-y,x),$$

where F_1 is a (non-homogeneous) polynomial of degree n. Moreover F_1 vanishes on Γ .

Let Γ be defined by the equation f = 0, where f is an irreducible polynomial in $\mathbb{C}[x, y]$ of degree d. Since $F_1 = 0$ on Γ one can write F_1 in the form: $F_1(x, y) = f^k(x, y)g_1(x, y), k \in \mathbb{Z}_+$. It is important, that f, g_1 can be assumed to be *real* polynomials. Next we replace G_1 by $G := G_1^{\frac{1}{k}}$:

$$G(x,y) = \frac{(F_1(x,y))^{\frac{1}{k}}}{(x^2+y^2)^{\frac{n}{2k}}} := \frac{F}{(x^2+y^2)^m}, F := (F_1(x,y))^{\frac{1}{k}} = fg, \qquad m = \frac{n}{2k}$$

Then G is also an integral, which also vanishes on Γ , but F, g are not necessarily polynomials anymore.

Lemma. For the integral F of Angular billiard for Γ , for all small ε , and $(x, y) \in \Gamma$ we have:

$$F(x + \varepsilon F_y, y - \varepsilon F_x) \left(-\frac{\mu}{\varepsilon}\right)^{2m} = F(x + \mu F_y, y - \mu F_x), \qquad (1)$$
$$\mu = -\frac{(x^2 + y^2)\varepsilon}{x^2 + y^2 + 2\varepsilon(xF_y - yF_x)}.$$

Remarkable Identity For any function f we define affine Hessian:

$$H(f) := f_y(f_{xx}f_y - f_{xy}f_x) + f_x(f_{yy}f_x - f_{xy}f_y)f_{xx}f_y^2 - 2f_{xy}f_xf_y + f_{yy}f_x^2.$$

Theorem. The following formula holds true

$$g^{3}(x,y)H(f(x,y)) = c_{1}(x^{2} + y^{2})^{3m-3},$$
 (2)

where c_1 is a constant.

For the proof we extract terms of order ε^3 in power series of the equation (1) of Lemma. Then it turns out that these terms form a complete derivative

$$L_v\left(H(g(x,y)f(x,y))(x^2+y^2)^{-3m+3}\right) = 0$$

12

Notation: For any polynomial p(x, y), we denote by $\tilde{p}(x, y, z)$ the corresponding homogeneous polynomial of the same degree as p(x, y).

Lemma. The identity

$$\tilde{g}_{1}^{3}(x,y,z)(\text{Hess}(\tilde{f}(x,y,z)))^{k} + c(x^{2} + y^{2})^{k(3m-3)} = \tilde{f}(x,y,z)\tilde{h}(x,y,z),$$
(3)

holds true for all $(x, y, z) \in \mathbb{C}^3$, where c is a constant, \tilde{h} is a homogeneous polynomial, and

$$\operatorname{Hess}(\tilde{f}(x,y,z)) := \det \begin{pmatrix} \tilde{f}_{xx} & \tilde{f}_{xy} & \tilde{f}_{xz} \\ \tilde{f}_{xy} & \tilde{f}_{yy} & \tilde{f}_{yz} \\ \tilde{f}_{xz} & \tilde{f}_{yz} & \tilde{f}_{zz} \end{pmatrix}$$

Reminder Given an algebraic curve C of degree d, $p \in C$ a regular point, let T be the tangent line at p.

The order r of the inflection point: $I_p(C,T) = r + 2$,

1) $r\geq$ 1, and

2) $r+2 \leq d$, by Bezout theorem.

Theorem.

 $I_p(C, Hess(C)) = r$, and hence $\leq d - 2$.

Proof of the Main Theorem Consider the situation in $\mathbb{C}P^2$. Any intersection point in $\mathbb{C}P^2$ between Hessian curve of Hess($\tilde{\Gamma}$) with $\tilde{\Gamma}$ is either singular or inflection point of $\tilde{\Gamma}$. So, if there is a singular or inflection point $(x_0 : y_0 : z_0) \in \tilde{\Gamma}$ such that $x_0^2 + y_0^2 \neq 0$, it then follows from (3) that c = 0. Therefore, Hess(\tilde{f}) $\equiv 0$ since $\tilde{g}_1 \neq 0$ identically on $\tilde{\Gamma}$. This implies that $\tilde{\Gamma}$ is a line, but this is impossible.

Let us prove now that $\tilde{\Gamma}$ must have singular points. If on the contrary $\tilde{\Gamma}$ is a smooth curve, then it follows from (3) that all inflection points must belong to two lines L_1 and L_2 defined by the equations

$$L_1 = \{x + iy = 0\}, \qquad L_2 = \{x - iy = 0\}.$$

Recall, d is the degree of $\tilde{\Gamma}$. Then the Hessian curve intersects $\tilde{\Gamma}$ exactly in inflection points, and moreover, it is remarkable fact that the intersection multiplicity of such a point of intersection equals exactly

the order of inflection point, and hence does not exceed (d-2). Furthermore, the lines L_1 and L_2 intersect $\tilde{\Gamma}$ maximum in 2*d* points together . Hence, we have altogether counted with multiplicities not more than 2d(d-2), but on the other hand the Hessian curve has degree 3(d-2) and thus by Bezout theorem the number of intersection points with multiplicities is 3d(d-2). This contradiction shows that $\tilde{\Gamma}$ can not be a smooth curve unless d = 2.