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Theorem. (M. Bialy and A.M., 2015) Let Γ be the dual curve to

γ. Suppose that Birkhoff billiard admits a polynomial integral. Then,

either Γ̃ has degree 2, or Γ̃ necessarily contains singular points. Moreover,

all singular and inflection points of Γ̃ in CP2 belong to the Absolute

Λ = {x2 + y2 = 0}.
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Corollary 1. If the Birkhoff billiard inside γ is integrable with an integral

which is polynomial in v, then γ̃ does not have two real algebraic ovals

having a common tangent line.

Indeed, if there were two such ovals γ and γ1 (see Fig. 1), then the

point (x, y) on Γ dual to the common tangent line τ would be a real

singular point of Γ different from O, and hence x2 + y2 ̸= 0. It then

follows from Theorem 1 that the Birkhoff billiard inside γ does not

admit polynomial integral on the energy level |v| = 1.

γ1γ ����
HHHHHHHHH

τ

Fig. 1 Non-integrable Birkhoff billiard inside γ.
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Example: Consider real algebraic curve

y2 = F (x) = (x−x1)(x−x2)(x−x3)(x−x4)f(x), xj ∈ R, x1 < x2 < x3 < x4,

where f(x) is a real polynomial such that F (x) > 0 for x ∈ (x1, x2) and

x ∈ (x3, x4). Then Corollary 1 applies with

γ = {(x,±
√
F (x)), x ∈ [x1, x2]}, γ1 = {(x,±

√
F (x)), x ∈ [x3, x4]}.

Moreover, since the algebraic curve γ̃ ⊂ CP2 is always singular, then

Theorem by Bolotin does not apply.
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Corollary 2. Assume that Γ̃ is a non-singular curve (of degree > 2)

in CP2 and has a smooth real oval Γ (for example, Γ̃ is a nonsingular

cubic). Then the dual curve γ is also an oval and Birkhoff billiard inside

γ is not integrable by Theorem 1. Notice, that in this case Bolotin’s

theorem does not apply, since γ̃ is necessarily singular in this case. The

inflection points of Γ̃ correspond to singular points of γ̃.
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Corollary 3. Let γ be the dual of Fermat oval Γ = {x2n+y2n = 1, n >

1}. Notice that Γ̃ is irreducible, non-singular curve and so by Theorem

1 the Birkhoff billiard inside γ is not integrable. One can easily compute

that in this case the oval γ can be written as follows:

γ = {x
2n

2n−1 + y
2n

2n−1 = 1}.

Therefore (the algebraic curve) γ is a strictly convex C1 curve in the

plane which has 4 singular points (±1,0), (0,±1) corresponding to 4

inflection points (±1,0), (0,±1) of Γ. So Bolotin’s theorem does not

apply in this case also.
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Theorem. (M. Bialy and A.M., 2016) If the Birkhoff billiard inside γ

admits polynomial integral of degree 4 in v1, v2, then γ is an ellipse.
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We shall call the Angular billiard integrable if there is a function G :

U\S → R such that

G(A) = G(A(A)), ∀A ∈ U\S.

Example 1 Let Γ be an ellipse defined by the equation

F =
x2

a2
+

y2

b2
− 1 = 0, G(x, y) =

F (x, y)

(x− x0)2 + (y − y0)2
.

Here O(x0, y0) is arbitrary point inside Γ,G is the integral.

Suppose that the Birkhoff billiard flow admits a polynomial integral Φ.

One can assume that Φ(q, v) is a homogeneous polynomial of a certain

even degree n in σ(v) = xvy − yvx, vx, vy :

Φ = Φ(σ, vx, vy).

And moreover, Φ vanishes on tangent vectors to γ.
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Theorem. Let γ be a convex closed curve and Φ(σ, vx, vy) be a homogeneous

polynomial integral of even degree n, vanishing on the tangent vectors

to the boundary γ. Then the Angular billiard corresponding to Γ is also

integrable with the integral of the form

G1(x, y) =
F1(x, y)

(
√
x2 + y2)n

, F1(x, y) = Φ(1,−y, x),

where F1 is a (non-homogeneous) polynomial of degree n. Moreover

F1 vanishes on Γ.
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Let Γ be defined by the equation f = 0, where f is an irreducible

polynomial in C[x, y] of degree d. Since F1 = 0 on Γ one can write F1

in the form: F1(x, y) = fk(x, y)g1(x, y), k ∈ Z+. It is important, that

f, g1 can be assumed to be real polynomials. Next we replace G1 by

G := G
1
k
1:

G(x, y) =
(F1(x, y))

1
k

(x2 + y2)
n
2k

:=
F

(x2 + y2)m
, F := (F1(x, y))

1
k = fg, m =

n

2k
.

Then G is also an integral, which also vanishes on Γ, but F, g are not

necessarily polynomials anymore.
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Lemma. For the integral F of Angular billiard for Γ, for all small ε,

and (x, y) ∈ Γ we have:

F (x+ εFy, y − εFx)
(
−
µ

ε

)2m
= F (x+ µFy, y − µFx), (1)

µ = −
(x2 + y2)ε

x2 + y2 +2ε(xFy − yFx)
.
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Remarkable Identity For any function f we define affine Hessian:

H(f) := fy(fxxfy − fxyfx) + fx(fyyfx − fxyfy)fxxf
2
y − 2fxyfxfy + fyyf

2
x .

Theorem. The following formula holds true

g3(x, y)H(f(x, y)) = c1(x
2 + y2)3m−3, (2)

where c1 is a constant.

For the proof we extract terms of order ε3 in power series of the

equation (1) of Lemma. Then it turns out that these terms form a

complete derivative

Lv

(
H(g(x, y)f(x, y))(x2 + y2)−3m+3

)
= 0
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Notation: For any polynomial p(x, y), we denote by p̃(x, y, z) the corresponding

homogeneous polynomial of the same degree as p(x, y).

Lemma. The identity

g̃31(x, y, z)(Hess(f̃(x, y, z)))k + c(x2 + y2)k(3m−3) = f̃(x, y, z)h̃(x, y, z),

(3)

holds true for all (x, y, z) ∈ C3, where c is a constant, h̃ is a homogeneous

polynomial, and

Hess(f̃(x, y, z)) := det

 f̃xx f̃xy f̃xz
f̃xy f̃yy f̃yz
f̃xz f̃yz f̃zz

 .
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Reminder Given an algebraic curve C of degree d, p ∈ C a regular point,

let T be the tangent line at p.

The order r of the inflection point: Ip(C, T ) = r +2,

1) r ≥ 1, and

2) r +2 ≤ d, by Bezout theorem.

Theorem.

Ip(C,Hess(C)) = r, and hence ≤ d− 2.
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Proof of the Main Theorem Consider the situation in CP2. Any intersection

point in CP2 between Hessian curve of Hess(Γ̃) with Γ̃ is either singular

or inflection point of Γ̃. So, if there is a singular or inflection point

(x0 : y0 : z0) ∈ Γ̃ such that x20 + y20 ̸= 0, it then follows from (3)

that c = 0. Therefore, Hess(f̃) ≡ 0 since g̃1 ̸= 0 identically on Γ̃. This

implies that Γ̃ is a line, but this is impossible.

Let us prove now that Γ̃ must have singular points. If on the contrary

Γ̃ is a smooth curve, then it follows from (3) that all inflection points

must belong to two lines L1 and L2 defined by the equations

L1 = {x+ iy = 0}, L2 = {x− iy = 0}.

Recall, d is the degree of Γ̃. Then the Hessian curve intersects Γ̃

exactly in inflection points, and moreover, it is remarkable fact that the

intersection multiplicity of such a point of intersection equals exactly
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the order of inflection point, and hence does not exceed (d − 2).

Furthermore, the lines L1 and L2 intersect Γ̃ maximum in 2d points

together . Hence, we have altogether counted with multiplicities not

more than 2d(d−2), but on the other hand the Hessian curve has degree

3(d−2) and thus by Bezout theorem the number of intersection points

with multiplicities is 3d(d−2). This contradiction shows that Γ̃ can not

be a smooth curve unless d = 2.


