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Main goals:
- to construct left-invariant f -structures on special classes of nilpotent

Lie groups using the theory of canonical structures on homogeneous k-
symmetric spaces;
- to study the relation of these structures with the generalized Hermitian

geometry.
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1. Homogeneous k–symmetric spaces and canonical struc-
tures
Researchers who founded this theory: V.I.Vedernikov, N.A.Stepanov, A.Ledger,

A.Gray, J.A.Wolf, A.S.Fedenko, O.Kowalski, L.V.Sabinin, V.Kac . . .

Definition 1. Let G be a connected Lie group, Φ its (analytic) au-
tomorphism, GΦ the subgroup of all fixed points of Φ, and GΦ

o the
identity component of GΦ. Suppose a closed subgroup H of G satisfies
the condition

GΦ
o ⊂ H ⊂ GΦ.

Then G/H is called a homogeneous Φ-space.
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Homogeneous Φ-spaces include homogeneous symmetric spaces (Φ2 = id)
and, more general, homogeneous Φ-spaces of order k (Φk = id) or, in the
other terminology, homogeneous k-symmetric spaces
For any homogeneous Φ-space G/H one can define the mapping

So = D : G/H → G/H, xH → Φ(x)H.
It is evident that in view of homogeneity the ”symmetry” Sp can be defined

at any point p ∈ G/H .

The class of homogeneous Φ–spaces is very large and contains even non-
reductive homogeneous spaces. In our talk we dwell on homogeneous k-
symmetric spaces G/H only.
Let g and h be the corresponding Lie algebras for G and H , ϕ = dΦe

the automorphism of g, where ϕk = id. Consider the linear operator
A = ϕ − id. It is known (N.A.Stepanov, 1967) that G/H is a reductive
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space for which the corresponding canonical reductive decomposition is
of the form:

g = h⊕m, m = Ag.

Besides, this decomposition is obviously ϕ–invariant. Denote by θ the
restriction of ϕ to m. As usual, we identify m with the tangent space
To(G/H) at the point o = H .

Definition 2 (VB, N.A.Stepanov, 1991). An invariant affinor structure
F (i.e. a tensor field of type (1, 1)) on a homogeneous k-symmetric
space G/H is called canonical if its value at the point o = H is a
polynomial in θ.
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Denote by A(θ) the set of all canonical affinor structures on G/H . It is
easy to see that A(θ) is a commutative subalgebra of the algebra A of all
invariant affinor structures on G/H . It should be mentioned that all canon-
ical structures are, in addition, invariant with respect to the ”symmetries”
{Sp} of G/H .

Note that the algebraA(θ) for any symmetric Φ-space (Φ2 = id) is trivial,
i.e. it is isomorphic to R.
The most remarkable example of canonical structures is the canonical al-
most complex structure J = 1√

3
(θ − θ2) on a homogeneous 3-symmetric

space (N.A.Stepanov, J.Wolf, A.Gray, 1967-1968).
It turns out that for homogeneous k-symmetric spaces (k ≥ 3) the algebra
A(θ) contains a rich collection of classical structures. All these canonical
structures on homogeneous k–symmetric spaces were completely described.
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We will concentrate on the following affinor structures of classical types:
almost complex structures J (J2 = −1);
almost product structures P (P 2 = 1);
f -structures (f3 + f = 0) (K.Yano, 1963);
f -structures of hyperbolic type or, briefly, h-structures (h3 − h = 0)

(V.F.Kirichenko, 1983).
Clearly, f -structures and h-structures are generalizations of structures J
and P respectively.
For future reference we indicate the general result for canonical f -structures

only.

We use the notation: s = [k−1
2 ] (integer part), u = s (for odd k), and

u = s + 1 (for even k).
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Theorem 1 (VB, N.A.Stepanov,1991). Let G/H be a homogeneous k-
symmetric space. All non-trivial canonical f -structures on G/H can
be given by the operators

f =
2

k

u∑
m=1

 u∑
j=1

ζj sin
2πmj

k

(θm − θk−m) ,
where ζj ∈ {−1; 0; 1}, j = 1, 2, . . . , u, and not all coefficients ζj are
zero. In particular, suppose that −1 /∈ spec θ. Then the polynomials
f define canonical almost complex structures J iff all ζj ∈ {−1; 1}.
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We now particularize the results above mentioned for homogeneous Φ-
spaces of orders 3, 4, 5, and 6 only.

Corollary 1. Let G/H be a homogeneous 3-symmetric space. There
are (up to sign) only the following canonical structures of classical type
on G/H:

J =
1√
3

(θ − θ2), P = 1.

We noted that the existence of the structure J and its properties are well
known (see N.A.Stepanov, J.Wolf, A.Gray, V.F.Kirichenko, . . . ).

Corollary 2. On a homogeneous 4-symmetric space there are (up to
sign) the following canonical classical structures:

P = θ2, f =
1

2
(θ − θ3), h1 =

1

2
(1− θ2), h2 =

1

2
(1 + θ2).
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Corollary 3. There exist (up to sign) only the following canonical
structures of classical type on any homogeneous 5-symmetric space:

P =
1√
5

(θ − θ2 − θ3 + θ4);

J1 = α(θ − θ4)− β(θ2 − θ3); J2 = β(θ − θ4) + α(θ2 − θ3);

f1 = γ(θ − θ4) + δ(θ2 − θ3); f2 = δ(θ − θ4)− γ(θ2 − θ3);

h1 =
1

2
(1 + P ); h2 =

1

2
(1− P );

where α =

√
5+2
√

5
5 ; β =

√
5−2
√

5
5 ; γ =

√
10+2

√
5

10 ; δ =

√
10−2

√
5

10 .
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Corollary 4. There exist (up to sign) only the following canonical
f -structures on any homogeneous 6-symmetric space:

f1 =

√
3

6
(θ + θ2 − θ4 − θ5), f2 =

√
3

6
(θ − θ2 + θ4 − θ5),

f3 = f1 + f2, f4 = f1 − f2,

where the structures f1 and f2 are the base canonical f–structures.
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2. Canonical f-structures and the generalized Hermitian
geometry.
2.1. Almost Hermitian structures

K Kähler structure: ∇J = 0;
H Hermitian structure: ∇X(J)Y −∇JX(J)JY = 0;
G1 AH-structure of class G1, or ∇X(J)X −∇JX(J)JX = 0;

G1-structure:
QK quasi-Kähler structure: ∇X(J)Y +∇JX(J)JY = 0;
AK almost Kähler structure: dΩ = 0;
NK nearly Kähler structure, ∇X(J)X = 0.

or NK-structure:

It is well known (see, for example, Gray-Hervella, 1980) that
K ⊂ H ⊂ G1; K ⊂ NK ⊂ G1; NK = G1 ∩QK; K = H ∩QK.
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As was already mentioned, the role of homogeneous almost Hermitian man-
ifolds is particularly important ”because they are the model spaces to which
all other almost Hermitian manifolds can be compared” (A.Gray, 1983).
We mention only one result closely related to our future consideration.

Theorem 2. (A.Gray, 1972) A homogeneous 3-symmetric space G/H
with the canonical almost complex structure J and an invariant com-
patible metric g is a quasi-Kähler manifold. Moreover, (G/H, J, g)
belongs to the class NK if and only if g is naturally reductive.
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2.2. Metric f-structures
A fundamental role in the geometry of metric f -manifolds is played by the
composition tensor T , which was explicitly evaluated (V.F.Kirichenko,
1986):

(1) T (X, Y ) =
1

4
f (∇fX(f )fY −∇f2X(f )f2Y ),

where ∇ is the Levi-Civita connection of a (pseudo)Riemannian manifold
(M, g), X, Y ∈ X(M).Using this tensor T , the algebraic structure of a
so-called adjoint Q-algebra in X(M) can be defined by the formula:
X ∗ Y = T (X, Y ). It gives the opportunity to introduce some classes of
metric f -structures in terms of natural properties of the adjoint Q-algebra.
We enumerate below the main classes of metric f -structures together with
their defining properties:
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Kf Kähler f–structure: ∇f = 0;
Hf Hermitian f–structure: T (X, Y ) = 0, i.e. X(M) is

an abelian Q-algebra;
G1f f -structure of class G1, or T (X,X) = 0, i.e. X(M) is

G1f -structure: an anticommutative Q-algebra;
QKf quasi-Kähler f–structure: ∇Xf + TXf = 0;
Kill f Killing f -structure: ∇X(f )X = 0;
NKf nearly Kähler f -structure, ∇fX(f )fX = 0.

or NKf -structure:

The following relationships between the classes mentioned are evident:
Kf = Hf ∩QKf ; Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .
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It is important to note that in the special case f = J we obtain the corre-
sponding classes of almost Hermitian structures (16 Gray-Hervella classes).
In particular, for f = J the classes Kill f and NKf coincide with the

well-known class NK of nearly Kähler structures.
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2.3. Canonical metric f-structures on homogeneous k-symmetric
spaces
Recall that (G/H, g) is naturally reductive with respect to a reductive

decomposition g = h⊕m if

g([X, Y ]m, Z) = g(X, [Y, Z]m)

for all X, Y, Z ∈ m. Here the subscript m denotes the projection of g onto
m with respect to the reductive decomposition.
Any invariant metric f -structure on a reductive homogeneous space G/H

determines the orthogonal decomposition m = m1 ⊕ m2 such that m1 =
Im f , m2 = Ker f .
We stress the particular role of canonical structures on homogeneous 4- and
5-symmetric spaces.



18

Theorem 3. The canonical f -structure f = 1
2(θ−θ3) on any naturally

reductive 4-symmetric space (G/H, g) is both a Hermitian f -structure
and a nearly Kähler f -structure. Moreover, the following conditions
are equivalent:
1) f is a Kähler f -structure; 2) f is a Killing f -structure; 3) f

is a quasi-Kähler f -structure; 4) f is an integrable f -structure; 5)
[m1,m1] ⊂ h; 6) [m1,m2] = 0; 7) G/H is a locally symmetric space:
[m,m] ⊂ h.
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Theorem 4. Let (G/H, g) be a naturally reductive 5-symmetric space,
f1 and f2, J1 and J2 the canonical structures on this space. Then f1
and f2 belong to both classes Hf and NKf. Moreover, the following
conditions are equivalent:
1) f1 is a Kähler f -structure; 2) f2 is a Kähler f -structure; 3) f1 is

a Killing f -structure; 4) f2 is a Killing f -structure; 5) f1 is a quasi-
Kähler f -structure; 6) f2 is a quasi-Kähler f -structure; 7) f1 is an
integrable f -structure; 8) f2 is an integrable f -structure; 9) J1 and J2
are NK-structures; 10) [m1,m2] = 0 (here m1 = Imf1 = Ker f2,m2 =
Im f2 = Ker f1); 11) G/H is a locally symmetric space: [m,m] ⊂ h.

Remark. Now there are general results for canonical f -structures on Rie-
mannian homogeneous k-symmetric spaces for any k in the case of naturally
reductive as well as ”diagonal” metrics (VB, A.Samsonov, 2010-2011).
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We should mention other geometric structures on homogeneous k-symmetric
spaces, which are of contemporary interest in geometry and topology:
- symplectic structures on k-symmetric spaces compatible with the corre-

sponding ”symmetries” of order k (A.Tralle, M.Bocheński);
- topology of homogeneous k-symmetric spaces, in particular, geometric

formality (D. Kotschick, S. Terzić, Jelena Grbić);
- geometry of elliptic integrable systems (I.Khemar).
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3. Lie groups as Riemannian homogeneous k-symmetric
spaces
Important particular case: M = G/GΦ, where Φk = id and GΦ = {e}

trivial. As a result, M = G/GΦ = G/{e} = G is a homogeneous k-
symmetric space.
We start with several important examples.
Example 1.
(G ≡ R3(a, b, c), g) the group of hyperbolic motions of the plane R2,

solvable, not nilpotent Lie group. (just Sol-geometry)
This is a Riemannian homogeneous 4-symmetric space (O.Kowalski, 1980).
The left-invariant canonical f -structure on this group is a Hermitian f -

structure, not nearly Kähler, non-integrable (VB, 2001).
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Example 2.
The generalization of the previous group:
(Gn ≡ R2n+1, g) solvable Lie group.
This is a Riemannian homogeneous (2n + 2)-symmetric space (M.Bozek,

1980).
Using our technique, a construction of generalized Hermitian structure

(g, f1, . . . , fn, T ) of rank n was realized, i.e. T = 0. (VB, D.Vylegzhanin,
2004).
Example 3.
The 6–dimensional generalized Heisenberg group (N, g) (A.Kaplan, 1981).
(N, g) can be represented as a Riemannian 3- and 4-symmetric space

(F.Tricerri, L.Vanhecke, 1983).
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k = 3: The canonical almost Hermitian structure J is not nearly Kähler
(g is not naturally reductive).
k = 4: The canonical f -structure is both a nearly Kähler and Hermitian
f -structure (VB, 1994).
Moreover, (N, g) is also a Riemannian 6-symmetric space. Then we obtain

4 canonical f -structures. We proved that the base f -structures f1 and f2
are non-integrable, nearly Kähler and Hermitian f -structures. Moreover,
J = f3 = f1 + f2 is a classical almost Hermitian structure of strictly class
G1 (i.e. neither nearly Kähler nor Hermitian structure).
It should be mentioned that G1–structures of such a kind have interesting

applications in heterotic strings (P.Ivanov, S.Ivanov, 2005).
Example 4. The 5-dimensional Heisenberg group H(2, 1) as a Riemann-

ian homogeneous 6–symmetric space. It is proved that all the canonical
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f -structures fi, i = 1, . . . , 4 are Hermitian f -structures. Besides, the base
f -structures f1 and f2 are integrable, but the other f -structures f3 and f4
are not integrable.
We notice that the group H(2, 1) is used in constructing the 6-dimensional

nilmanifold connected with the heterotic equations of motion in string
theory (M.Fernandez, S.Ivanov, L.Ugarte, R.Villacampa, 2009).

4. Left-invariant f-structures on 2-step nilpotent and
filiform Lie groups
Many results of this section were obtained jointly P.A.Dubovik.
4.1. General approach. Let G be a 2-step nilpotent Lie group, g

its Lie algebra, Z(g) the center of g. Consider a left-invariant metric f -
structure on G with respect to a left-invariant Riemannian metric g.
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Theorem 5 (VB, P.Dubovik, 2013). (i) If Z(g) ⊂ Ker f then f is a
Hermitian f -structure, but it is not a Kähler f -structure.
(ii) If Imf ⊂ Z(g) then f is both a Hermitian and a nearly Kähler
f -structure, but it is not a Kähler f -structure.

Example 5. Let H(n, 1) be a (2n + 1)-dimensional matrix Heisen-
berg group. We can consider H(n, 1) as a Riemannian homogeneous k–
symmetric space, where k is even.
As an application of a previous theorem, we obtain

Theorem 6 (VB, P.Dubovik, 2013). Any left-invariant canonical f -
structure on a (2n + 1)-dimensional matrix Heisenberg group H(n, 1)
is a Hermitian f -structure, but it is not a Kähler f -structure.
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4.2. Left-invariant f-structures on Lie groups.
Consider more general approach.
Let G be a connected Lie group, g its Lie algebra. Denote by g(1) = [g, g]

and g(2) = [g(1), g(1)] the first and the second ideal of the derived series.
Consider a left-invariant Riemannian metric g on G determined by the
Euclidean inner product on g.

Theorem 7 (P.Dubovik, 2013). Let f be a left-invariant metric f -
structure on G satisfying any of the following conditions:
(i) g(1) ⊂ Ker f ;

(ii) Imf ⊂ g(1), g(2) ⊂ Ker f ;

(iii) Imf ⊂ Z(g) ⊂ g(1).
Then f is a Hermitian f -structure. Moreover, the condition (iii)

implies that f is a nearly Kähler f -structure. In addition, under the
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condition (i) f is a nearly Kähler f -structure if and only if [fX, f2X ] =
0 for any X ∈ g.

Note that, for example, the 6-dimensional generalized Heisenberg group
and the 5-dimensional Heisenberg group H(2, 1) admit f -structures men-
tioned in the above theorem.

4.3. Filiform Lie groups
Let g be a nilpotent Lie algebra of dimension m. Let

C0g ⊃ C1g ⊃ · · · ⊃ Cm−2g ⊃ Cm−1g = 0
be the descending central series of g, where

C0g = g, Cig = [g, Ci−1g], 1 ≤ i ≤ m− 1.
A Lie algebra g is called filiform if dimCkg = m − k − 1 for k =

1, . . . ,m− 1. A Lie group G is called filiform if its Lie algebra is filiform.
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Note that the filiform Lie algebras have the maximal possible nilindex,
that is m− 1.
Basic examples of (n + 1)-dimensional filiform Lie algebras:
1. The Lie algebra Ln:
[X0, Xi] = Xi+1, i = 1, . . . , n− 1.
2. The Lie algebra Qn(n = 2k + 1):
[X0, Xi] = Xi+1, i = 1, . . . , n− 1,
[Xi, Xn−i] = (−1)iXn, i = 1, . . . , k.
Filiform Lie algebras and Lie groups are intensively studied in many di-

rections:
- The Riemannian geometry (sectional curvatures, Ricci curvature etc):

M. Kerr, Tr. Payne (2010);
- Graded filiform Lie algebras: D. Millionshchikov (2004-present);
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- Totally geodesic subalgebras of filiform Lie algebras: Yu.Nikolayevsky et
al (2013-present);
- Solvable extensions of filiform Lie groups: Yu.Nikolayevsky, Yu.Nikonorov

(2015).
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4.4. Left-invariant f-structures on 6-dimensional filiform Lie
groups.
The classification of 6-dimensional nilpotent Lie algebras was obtained by

V.V.Morozov (1958), there exist 32 types of such algebras.
We select from this list 5 filiform Lie algebras:

(1) The Lie algebra g = L5:
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6.

Proposition 1. If e1 ∈ Ker f , then f is a Hermitian f -structure.

For example, the following f -structure satisfies the above condition:
f (e1) = f (e2) = 0, f (e3) = −e4, f (e4) = e3,
f (e5) = e6, f (e6) = −e5.

(2) The Lie algebra g = Q5:
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[e1, e2] = e3, [e1, e5] = e6, [e2, e3] = e4, [e2, e4] = e5, [e3, e4] = e6.

Proposition 2. Suppose any of the following conditions is satisfied:
e1, e4 ∈ Ker f , e3, e5 ∈ Ker f , e2, e6 ∈ Ker f. Then f is a Hermitian
f -structure.

For example, the following f -structure satisfies the above condition:
f (e1) = f (e4) = 0, f (e2) = −e3, f (e3) = e2,
f (e5) = e6, f (e6) = −e5.

On analogy, the other three filiform Lie algebras were studied.
Remark. All the above f -structures are Hermitian, but not nearly

Kähler. The natural question: are there nearly Kähler f -structures in
the case?
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5. Left-invariant f-structures on the groups H(p, r).
The following groups were introduced by M.Goze and Y.Haraguchi (1982):

H(p, r) = M1p ×Mpr ×M1r,

where matrices Mij have dimensions 1× p, p× r, 1× r respectively.
The multiplication in H(p, r):

(x, y, z) (x′, y′, z′) = (x + x′, y + y′, z + z′ +
1

2
(xy′ − x′y)).

H(p, r) is a (rp+ r+ p)-dimensional 2-step nilpotent Lie group, which can
be equipped with the left-invariant Riemannian metric g. The particular
case H(p, 1) (i.e. r = 1) is exactly the matrix Heisenberg group.

Theorem 8. (P.Piu, M.Goze, 1993) (H(p, r), g) is naturally reductive
if and only if H(p, r) is a Heisenberg group (i.e. r = 1).
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Denote by h(p, r) the corresponding Lie algebra.
Question. Are there canonical f -structures on the groups H(p, r)?
Example. Consider the case p = r = 2, i.e. the 8-dimensional group
H(2, 2). Lie brackets for the orthonormal basis in h(2, 2) are:

[e1, e5] = [e2, e7] = e3, [e1, e6] = [e2, e8] = e4.

We construct two metric automorphisms of order 4 of the Lie algebra h(2, 2).
As a result, H(2, 2) is a Riemannian 4-symmetric space in two ways. So,
we can compute the corresponding canonical f -structure for both cases and
study their properties (the work is in progress).
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6. Recent interesting information
The only homogeneous 6-dimensional nearly Kähler manifolds:

S6, S3 × S3, CP 3, SU(3)/Tmax

(A.Gray, S.Salamon, Nagy, J.Butruille). All of these spaces are 3-symmetric.

Lorenzo Foscolo, Mark Haskins, New G2-holonomy cones and exotic
nearly Kähler structure on S6 and S3 × S3 // Annals of Mathematics
(Accepted: 27 July 2016)
From the Abstract:
”...We prove the existence of the first complete inhomogeneous nearly

Kähler 6-manifolds by proving the existence of at least one cohomogeneity
one nearly Kähler structure on the 6-sphere and on the product of a pair
of 3-spheres...”
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