On holomorphically projective mappings of parabolic Kähler manifolds

Patrik Peska

Palacky University Olomouc, Olomouc, CZECH REPUBLIC

[patrik_peska@seznam.cz]

We study with H. Chudá, J. Mikeš, and M. Shiha fundamental equations of holomorphically projective mappings of parabolic Kähler spaces (which are generalized classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics, see [7,7]. We show that holomorphically projective mappings preserve the smoothness class of metrics.

We remind, that an n-dimensional (pseudo-) Riemannian manifold (M, g) is called an m-parabolic Kähler manifold, if beside the metric tensor g, a tensor field F of a rank $m > 1$ of type $(1, 1)$ is given on the manifold M_n, such that the following conditions hold: $F^2 = 0$, $g(X, FX) = 0$, $\nabla F = 0$, where X is an arbitrary tangent vector, ∇ denotes the covariant derivative.
