On the existence of pre-semigeodesic coordinates

Irena Hinterleitner

Brno University of Technology, Faculty of Civil Engineering, Brno, CZECH REPUBLIC [Hinterleitner.I@fce.vutbr.cz]

In the present lecture we consider the problem of the existence of presemigeodesic coordinates on manifolds with affine connection. We proved that pre-semigeodesic coordinates exist in the case when the components of the affine connection are differentiable functions.

Let $A_n = (M, \nabla)$ be an *n*-dimensional manifold M with the affine connection ∇ , dimension $n \geq 2$, and let $U \subset M$ be a coordinate neighbourhood at the point $x_0 \in U$. A couple (U, x) is a coordinate map on A_n .

Semigeodesic coordinate systems on surfaces and (pseudo-) Riemannian manifolds are generalized in the following way [2]:

Definition 1. Coordinates (U, x) in A_n are called *pre-semigeodesic* coordinates if one system of coordinate lines is geodesic and the natural parameter is just the first coordinate.

In [1,2] the following theorems were proved.

Theorem 1. The conditions $\Gamma_{11}^h(x) = 0$, h = 1, ..., n, are satisfied in (U, x) if and only if (U, x) is pre-semigeodesic.

We thought that the existence of this chart is trivial. This problem is obviously more difficult than we supposed. This was observed in [3] where precisely the existence of pre-semigeodesic charts was proved in the case when the components of the affine connection are real analytic functions.

We proved that the pre-semigeodesic charts exist in the case when the components of the affine connection are differentiable functions. The following is true:

Theorem 2. For any affine connection determined by $\Gamma_{ij}^h(x)$? $\in C^{(U)}, r \geq 2$, there exists a local transformation of coordinates determined by $x' = f(x) \in C^r$ such that the connection in the new coordinates $(U', x'), U' \in U$, satisfies $\Gamma_{11}^{'h}(x') = 0, h = 1, ..., n,$, *i.e.* the coordinates (U', x') are pre-semigeodesic and the components $\Gamma_{ij}^{'h}(x') \in C^{r-2}(U')$.

The differentiability class r is equal to $0, 1, 2, ..., \infty, \omega$, where $0, \infty$ and ω denote continuous, infinitely differentiable, and real analytic functions, respectively.

It therefore follows that the existence of a pre-semigeodesic chart is guaranteed in the case when the components of the affine connection ∇ are twice differentiable. The existence of this chart is not excluded in the case when the components are only continuous.

This is a joint work with Josef Mikeš.

- Dušek Z, Kowalski O. How many are affine connections with torsion. Arch. Math. 2014; 50(5): 257-264.
- [2] Mikeš J, Vanžurová A, Hinterleitner I. Geodesic mappings and some generalizations. Palacky University Press, Olomouc. 2009.
- [3] Mikeš J, Vanžurová A. Reconstruction of an affine connection in generalized Fermi coordinates. Bull. Malays. Math. Sci. Soc. 2016.