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1. Introduction  

Forty five years ago J. H. Sampson has defined a Laplacian operator 

S  acting on covariant symmetric tensors [1]. This operator was an 

analogue of the well known Hodge-de Rham Laplacian Н  which acts 

on exterior differential forms [2]. These two operators S  and Н  are 

self-adjoint elliptic operators and hence their kernels are finite-

dimensional vector spaces on a compact Riemannian manifold. In ad-

dition, the Sampson operator S  admits the Weitzenböck decomposi-

tion formula as well as the Hodge-de Rham Laplacian Н . 

[1] Sampson J. H., On a theorem of Chern, Trans. Amer. Math. Soc., 177 
(1973), 141-153. 

[2] Petersen P., Riemannian geometry, Springer Science, New York (2006). 



In our report, we will consider the little-known Sampson Laplacian S  

using the analytical method, due Bochner, of proving vanishing theo-

rems for the null space of a Laplace operator admitting a Weitzenböck 

decomposition (see [1]; [2]) and further of estimating its lowest eigen-

value (see, for example, [3]). 
 

[1] Bérard P.H., From vanishing theorems to estimating theorems: the Bo-
chner technique revisited, Bulletin of American Mathematical Society, 19:2 
(1988), 371-406. 

[2] Pigola, S., Rigoli, M., Setti, A.G.: Vanishing and finiteness results in geo-
metric analysis. A generalization of the Bochner technique, Birkhäuser, 
Basel (2008).  

[3] Craioveanu M., Puta M., Rassias T. M., Old and new aspects in spectral 
geometry, Kluwer Academic Publishers, London (2001). 

 



Theorems and corollaries of the report complement our results of our 

paper from the following list: [1]; [2]; [3]; [4]. In addition, applications of 

Sampson Laplacian S  can be find in our paper [1] and [5]. 

[1] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 

[2] Stepanov S.E., Vanishing theorems in affine, Riemannian and Lorentz 
geometries, Journal of Mathematical Sciences (New York), 141:1 (2007), 
929-964.   

[3] Stepanov S.E., Tsyganok I.I., Mikesh J., On a Laplacian which acts on 
symmetric tensors, Preprint, arXiv: 1406.2829 [math.DG], 1 (2014), 14 pp. 

[4] Stepanov S.E., Tsyganok I.I., Aleksandrova I.A., A remark on the Lapla-
cian operator which acts on symmetric tensors, Preprint, arXiv: 1411.1928 
[math.DG], 4 (2014), 8 pp. 

[5] Mikeš J., Stepanova E.S., A five-dimensional Riemannian manifold with 
an irreducible SO(3)-structure as a model of abstract statistical manifold, 
Ann. Glob. Anal. Geom., 45:2 (2014), 111-128. 



2. Preliminaries  

Let  gM,  be a Riemannian manifold of dimension n  2 with the Levi-

Civita connection . Let TM (resp. MT  ) be its tangent (resp. cotan-

gent) bundle, and let  MTSMS pp   be the bundles of covariant 

symmetric p-tensors on M. The formula  

  g
M

dv,g
!р

,   1 ,                         (2.1) 

where MSС, p and gdv  is the volume element of  gM,  deter-

mines the  g,ML2 -scalar product on MSC p . 

 

 



We will apply the above to the operator  

MSCMSC: pp 1   

of degree 1 such that    Sym1p  where MSMT pp  :Sym  is 

the linear operator of symmetrization. Then there exists its formal ad-

joint operator 

MSCMSC pp  1:  

with respect to the  g,ML2 -product that is called the divergence op-

erator (see [1, p. 55; 356]).  

 

 
[1] Besse A.L, Einstein manifolds, Springer-Verlag, Berlin – Heidelberg 1987. 
 



Sampson has defined in [1, p. 147] the second order operator   

S   MSСMSС: pp      
for an arbitrary Riemannian manifold (M, g). Moreover, it was shown in 

[1, p. 147]  that the operator S  has the Weitzenböck decomposition 

 pS                                               (2.2) 

where p  can be algebraically (even linearly) expressed through the 

curvature R and Ricci Ric tensors of  g,M  and    is the Bo-

chner Laplacian (see [2, pp. 53; 356]).  

[1] Sampson J. H., On a theorem of Chern, Transactions of the American 
Mathematical Society, 177 (1973), 141-153. 

[2] Besse A.L, Einstein manifolds, Springer-Verlag, Berlin – Heidelberg 
(1987). 

 



Remark. The Sampson operator can be found in the monograph [1, p. 

356] and in the papers from the following list [2]; [3]; [4]. But in fact, we 

were the first and only who began to study the properties of this opera-

tor in details. 

[1] Besse A.L, Einstein manifolds, Springer-Verlag, Berlin – Heidelberg 1987. 

[2] Sumitomo T., Tandai K., Killing tensor fields on the standard sphere and 
spectra of  SO(n + 1) / (SO(n – 1)  SO(2)) and O(n +1) / ( O(n – 1)  
O(2)), Osaka Journal of  Mathematics, 20 : 1 (1983), 51-78. 

[3] Boucetta M., Spectre des Laplaciens de Lichnerowicz sur les sphères et 
les projectifs réels, Publicacions Matemàtiques, 43 (1999), 451-483. 

[4] Heil K., Moroianu A., Semmelmann U., Killing and conformal Killing ten-
sors, J. Geom. Phys., 106 (2016), 383-400. 

 



The following properties are the elementary properties of Sampson 

operator S  on a compact Riemannian manifold  gM, . 

(i) The operator S  is a self-adjoint operator with respect to the 

 g,ML2 -product, i.e.  SS ,,   for any MSC, p .  

(ii) The principal symbol   of S  satisfies the condition     xS x,   

  x,g   for an arbitrary  0 MTx . Therefore, by the 

Sampson operator S  is a Laplacian and its kernel is a finite-

dimensional vector space on a compact manifold  gM, .  

(iii) Two vector spaces SKer  and SIm  are orthogonal complements 

of each other with respect to the  g,ML2 -product, i.e.  

 MSC p
SKer  SIm . 



2. The kernel of the Sampson Laplacian 

Let (M, g) be a locally Euclidean manifold then the equation 0 S  is 

equivalent to the equation   02

2
1 






k
k

...ii

x
p


 with respect to a local Carte-

sian coordinate system nx,...,x1 . This means that all components of  

this tensor   are harmonic functions. Therefore, the symmetric tensor 

Sker   was named in [1, p. 148] as a harmonic symmetric p-tensor 

on (M, g).  

 
[1] Sampson J. H., On a theorem of Chern, Transactions of the American 

Mathematical Society, 177 (1973), 141-153. 



The “energy” of symmetric tensor field   is given by the formula   E  

½  S, , then the equation 0 S  is the condition for a free extre-

mal of  E  for an arbitrary compact (M, g) (see [1, p. 148]).  

In addition, in [1, p. 151] was proved that for a compact Riemannian 

manifold of constant negative curvature the only harmonic non-zero p-

tensor fields are those of the form  g...ggconst Sym . 

Other a non-trivial interesting example of a harmonic symmetric tensor 

can be found in our paper [2]. 
[1] Sampson J. H., On a theorem of Chern, Transactions of the American 

Mathematical Society, 177 (1973), 141-153. 
[2] Mikeš J., Stepanova E.S., A five-dimensional Riemannian manifold with 

an irreducible SO(3)-structure as a model of abstract statistical manifold, 
Ann. Glob. Anal. Geom., 45:2 (2014), 111-128. 



We recall that the tensor field  MSC p  which satisfies the equation 

0  is well known in the theory of general relativity as a symmetric 

Killing tensor (see, for example, [1] and [2]). Then an arbitrary a diver-

gence-free symmetric Killing p-tensor   belongs to SKer .  

It is easy to verify that an arbitrary trace-free symmetric Killing p-

tensor   is a divergence-free symmetric Killing p-tensor. Therefore, 

an arbitrary trace-free symmetric Killing p-tensor   belongs to SKer . 

[1] Collinson C.D., Howarth L., Generalized Killing tensors, General Relativity 
and Gravitation, 32:9 (2000), 1767-1776. 

[2] Dolan P., Kladouchou A., Card C., On the significance of Killing tensors, 
General Relativity and Gravitation, 21:4 (1989), 427-437. 



Theorem 2.1.  Let   be a divergence-free (or trace-free) symmetric 

Killing tensor on a Riemannian manifold  gM, , then it satisfies the fol-

lowing systems of differential equations 

(i)                                   ;S 0   

(ii)                                   .0  

Conversely, if  gM,  is compact and a tensor field MSC p  satisfies 

(i) and (ii), then   is a divergence-free Killing tensor.  

Remark. For 1p , from Theorem 2.1 we obtain Theorem 2.3 on infini-

tesimal isometrics presented in Kobayashi’s monograph on transfor-

mation groups (see [1]). 
[1] Kobayashi S., Transformation groups in differential geometry, Springer-

Verlag, Berlin and Heidelberg (1995). 



For the case p  1, the Sampson Laplacian can be rewriten in the form  

1S  where Ric1  for the Ricci tensor Ric of  gM, . Therefore, 

we have the following theorem (see [1]).  

Theorem 2.2. the Sampson Laplacian MTCMTC   :S  is dual 

to the Yano Laplacian □: ТМСТМС    by the metric g .  

Remark. The operator □: ТМСТМС    was defined by Yano for the 

investigation of local isometric, conformal, affine and projective trans-

formations of compact Riemannian manifolds (see [2, p. 40]).  

[1] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 

[2] Yano K., Integral formulas in Riemannian geometry, Marcel Dekker, New 
York (1970). 

 



The vector field   on  gM,  is called an infinitesimal harmonic trans-

formation if the one-parameter group  xt,: ℝ   MxM t    of 

infinitesimal point transformations of  gM,  generated by  consists of 

harmonic diffeomorphisms (see [1]). We have proved in [2] that the fol-

lowing theorem is true.  

Theorem 2.3. Vector field   is an infinitesimal harmonic transforma-

tion on  gM,  if and only if 0 S  for the 1-form   corresponding to   

under the duality defined by the metric g .  

[1] Stepanov S.E., Shandra I.G., Geometry of infinitesimal harmonic trans-
formations, Ann. Glob. Anal. Geom., 24 (2003), 291-299. 

[2] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 

 



We have proved also that a Killing vector on a Riemannian manifold, 

holomorphic vector field on a nearly Kählerian manifold and the vector 

field that transforms a Riemannian metric into a Ricci soliton metric are 

examples of infinitesimal harmonic transformations (see [1]; [2]). 

Therefore, all one-forms which corresponding to these vector fields 

under the duality defined by the metric g  belong to the kernel for the 

Sampson Laplacian S . 

 

[1] Stepanov S.E., Shandra I.G., Geometry of infinitesimal harmonic trans-
formations, Ann. Glob. Anal. Geom., 24 (2003), 291-299. 

[2] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 

 



Let   be an arbitrary one-form such that SKer . In accordance 

with the theory of harmonic maps (see [1]) we define the energy den-

sity of the flow on  gM,  generated by the vector field #   as the 

scalar function   2

2
1  e  where   ,g2 . Then the Beltrami 

Laplacian      eeB graddiv :   for the energy density  e  of an in-

finitesimal harmonic transformation #   has the form (see [2]) 

                                         .,RiceB   2                         (2.3) 

                          
[1] Eells, J., Sampson, J.H., Harmonic mappings of Riemannian manifolds, 

American Journal of Mathematics, 86 (1964), no. 1, 109-160. 
[2] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 

with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 



We recall that the Ricci curvature of g  is quasi-negative if it is non-

negative everywhere in a connected open domain MU   and it is 

strictly negative in all directions at some point of U . In this case,  e  is 

a subharmonic function.  Then using the Hopf’s maximum principle 

(see [1]), we can prove the following  

Theorem 2.3. Let  gM,  be a Riemannian manifold and MU   be a 

connected open domain with the quasi-negative Ricci tensor Ric. If the 

energy density of the flow   2

2
1  e  generated by #   for an arbi-

trary one-form SKer  has a local maximum in some point of U , 

then   is identically zero everywhere in U . 
[1] Calabi E., An extension of E. Hopf’s maximum principle with an applica-

tion to Riemannian geometry, Duke Math. J., 25 (1957), 45-56. 



Remark. Theorem 2.3. is a direct generalization of the Theorem 4.3 

presented in Kobayashi’s monograph on transformation groups (see 

[1, p. 57]) and Wu’s proposition on a Killing vector whose length 

achieves a local maximum (see [2]). 

In addition, we can formulate the following statement, which is a corol-

lary of Theorem 2.3. 

Corollary 2.4. The Sampson Laplacian  МТСМТСS
  :  has a 

trivial kernel on a compact Riemannian manifold  gM,  with quasi-

negative Ricci curvature. 

[1] Kobayashi S., Transformation groups in differential geometry, Springer-
Verlag, Berlin and Heidelberg, 1995. 

[2] Wu H., A remark on the Bochner technique in differential geometry, Proc. 
Amer. Math. Soc., 78:3 (1980), 403-408. 



Let MSСMSСS
22:    be the Sampson Laplacian acting on the 

vector space of covariant symmetric 2-tensors MS 2 . In this case, the 

Weitzenböck decomposition formula (2.2) has the form 

  2S  where     kl
ikjl

k
ijk

k
jik RRR  22   for the local 

components ij  of MSC 2 , ijR  of the Ricci tensor and ijklR  of the 

curvature tensor R. Let SKer , then direct calculations give us the 

formula 

   222 sec2
2
1

ji
ji

jiB ee   


            (2.4) 

for a local orthonormal frame ne,...,e1  such that   ijijix e,e    and 

for the sectional curvature  ji ee sec   in the two-direction ji ee  .  



Then using the Hopf’s maximum principle (see [1]), we can prove the 

following  

Theorem 2.4. Let U  be a connected open domain of a Riemannian 

manifold  gM, ,   be a 2-tensor field defined on U  such that  

SKer  everywhere in U . If the section curvature of  gM,  is nega-

tive semi-define at any point of U  and the scalar function 2  has a 

local maximum at some point of U , then   is invariant under parallel 

translation in U , i.e. 0 . If, moreover, 0sec   at some point of U  or 

 gM,  is an irreducible Riemannian manifold, then   is constant multi-

ple of g  at all points of U . 

[1] Calabi E., An extension of Hopf’s maximum principle with an application 
to Riemannian geometry, Duke Math. J., 25 (1957), 45-56. 



Based on (2.4) and the Bochner maximum principle (see [1, Theorem 

2.2]), we can formulate the statement that is a corollary of our Theo-

rem 2.4. 

Corollary 2.5. Let  gM,  be a compact Riemannian manifold  gM,  

with nonpositive sectional curvature, then the kernel of the Sampson 

Laplacian MSСMSСS
22:    consists of parallel symmetric 2- ten-

sor fields.  If the sectional curvature in all directions is less than zero at 

some point of  gM,  or  gM,  is an irreducible Riemannian manifold, 

then an arbitrary tensor field which belongs to the kernel of the 

Sampson Laplacian is constant multiple of g . 

[1] Bochner S., Yano K., Curvature and Betti numbers, Princeton, Princeton 
University Press (1953). 



We recall here that a complete simply connected nonpositively curved 

manifold  gM,  is called a Hadamar manifold (see [1, p. 381]). In par-

ticular, a Riemannian (globally) symmetric manifold of the non-

compact type is a non-trivial example of a Hadamard manifold  gM, , 

since it is a simply connected Riemannian symmetric manifold with 

nonpositive (but not identically zero) sectional curvature (see [2, pp. 

256; 258]).  Based on (2.4) and the Yau theorem on subharmonic 

function (see [3, p. 663]), we can formulate 

[1] Li P., Geometric Analysis, Cambridge University Press, Cambridge, 2012. 
[2] Kobayashi Sh., Nomizu K., Foundations of differential geometry, vol. II, 

New York-London-Sydney, Int. Publishers (1969). 
[3] Yau S.-T., Some function-theoretic properties of complete Riemannian 

manifold and their applications to geometry, Indiana Univ. Math. J., 25:7 
(1976), 659-670. 



 
Corollary 3.3. Let   be a symmetric 2-tensor on a Hadamar manifold, 

in particular on a Riemannian symmetric manifold  gM,  of the non-

compact type. If SKer  and  
M g

q dVol  at least for one 1q . 

Then   is invariant under parallel translation, i.e., 0 . If in this 

case the volume of  gM,  is infinite, then the harmonic symmetric 2-

tensor   is identically zero. 

Remark. In [3, p. 663] was proved the following theorem: Let u  be a 

nonnegative subharmonic function on a complete manifold  gM, , then 

 
M g

q dvu  for 1q , unless u  is a constant function C.    



3. Spectral properties of the Sampson Laplacian 

A real number р , for which there is a symmetric p-tensor MSС p  

(not identically zero) such that S  р , is called an eigenvalue of 

the Sampson Laplacian MSСMSС рр
S

  :  and the corresponding 

symmetric p-tensor MSС p  is called an eigentensor of the 

Sampson Laplacian S  corresponding to р . All nonzero eigentensors 

corresponding to a fixed eigenvalue р  form a vector subspace of 

MS p  denoted by  MV р
 and called the eigenspace of the Sampson 

Laplacian corresponding to its eigenvalue р .  

 

 



Using the general theory of elliptic operators on a compact Rieman-

nian manifold (M, g) it can be proved that S  has a discrete spectrum, 

denoted by Spec(p) S , consisting of real eigenvalues of finite multiplic-

ity which accumulate only at infinity (see [1]). In symbols, we have                           

Spec(p) S     ...рр
210  . 

In addition, if we suppose that МТСМТСS
  :  and the Ricci 

tensor Ric is negative everywhere on (M, g) then (see [2]) 

Spec(1) S     ...1
2

1
10  . 

[1] Craioveanu M., Puta M., Rassias T. M., Old and new aspects in spectral 
geometry, Kluwer Academic Publishers, London (2001). 

[2] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 

 



Theorem 3.1. Let (M, g) be an n-dimensional  2п  compact and ori-

ented Riemannian manifold and S : МТСМТС    be the 

Sampson Laplacian.  

(i) Suppose the Ricci tensor is negative then an arbitrary eigenvalue 1   

of S  is positive. 

(ii) The eigenspaces of S  are finite dimensional. 

(iii) The eigentensors corresponding to distinct eigenvalues are or-

thogonal.  

Theorem 3.2. Let (M, g) be a 2-dimensional compact oriented Rie-

mannian manifold. Then the first eigenvalue 1

1  of the Sampson Lapla-

cian S : МТСМТС    is a non-negative number. 



 Moreover, the following theorem is true (see [1]). 

Theorem 3.3. Let (M, g) be an n-dimensional (n  2) compact oriented 

Riemannian manifold. Suppose the Ricci tensor Ric is negative, then 

the first eigenvalue 1
1  of the Sampson Laplacian S : 

МТСМТС    satisfies the inequality r21
1   for the largest 

(negative) eigenvalue – r of the Ricci tensor Ric on (M, g).  The equal-

ity r21
1   is attained for some harmonic eigenform  МТС   and in 

this case the multiplicity of 1
1  is less than or equals to the Betti num-

ber b1(M). 

 

[1] Stepanov S.E., Mikeš J., The spectral theory of the Yano rough Laplacian 
with some of its applications, Ann. Glob. Anal. Geom., 48 (2015), 37-46. 



 

We consider now the Sampson Laplacian MSСMSСS
22:   . It 

has a discrete spectrum, denoted by  

                              Spec(2) S     ...2
2

2
10  . 

Theorem 3.4. Let (M, g) be an n-dimensional  2п  compact and ori-

ented Riemannian manifold and MSСMSСS
22:    be the 

Sampson Laplacian. Suppose the section curvature is negative de-

fined then an arbitrary eigenvalue 2
   of S  is positive and 

Spec(2) S     ...2
2

2
10  . 

. 

 



 

Let (M, g) be an n-dimensional compact and oriented Riemannian 

manifold with sectional curvature bounded above by a strictly negative 

constant  k . Then the following theorem holds. 

 
Theorem 3.5. Let (M, g) be an n-dimensional compact and oriented 

Riemannian manifold with sectional curvature bounded above by a 

strictly negative constant  k . Then any eigenvalue 2  of the Sampson 

Laplacian S MSСMSС 22:    satisfies the inequality 2  n k  for the 

non-zero eigentensor MSС 2  such that   corresponds to the ei-

genvalue 2  and g   for some smooth scalar function  .  



 

Next we will consider the Sampson Laplacian MSСMSСS
2
0

2
0:    

acting on the smooth sections of the vector bundle of trace-free sym-

metric 2-tensor fields MS 2
0  on a compact Riemannian manifold  gM, . 

The following obvious statement is true. 

Theorem 3.6. The Sampson Laplacian S  maps MS 2
0  to itself.  

Let  gM,  be a compact Riemannian manifold with negative sec-

tional curvature.  We denote by maxK  the maximum of the section cur-

vature of  gM, . In particular, we can consider a compact hyperbolic 

manifold (ℍn, g0) with constant sectional curvature equal to – 1. In this 



case, the first eigenvalue 2
1  of the Sampson Laplacian defined on 

trace-free symmetric 2-tensor fields satisfies the inequalitiy n22
1  . 

This proposition is a corollary of the following theorem.  

Theorem 3.7. Let  gM,  be an n-dimensional  2п  compact Rieman-

nian manifold with negative sectional curvature and 

MSСMSСS
2
0

2
0:    be the Sampson Laplacian acting on trace-free 

symmetric 2-tensor fields. Then the first eigenvalue of S  satisfies the 

inequality maxKn22
1   for the maximum maxK  of the sectional curva-

ture of  gM, . If maxKn22
1  , then the trace-free symmetric 2-tensor 

field   corresponding to 2
1  is invariant under parallel translation. In 



this case, if  gM,  is irreducible then   is a constant multiplied by the 

metric g  at each point of  gM, . 

 

 

 

Thank a lot for your attention! 
 


