THE SAMPSON LAPLASIAN
ACTING ON COVARIANT SYMMETRIC TENSORS

S. E. Stepanov
Finance University under the Government of Russian Federation
e-mail: s.e.stepanov@mail.ru

Josef Mikeš
Palacky University, Czech Republic
e-mail: josef.mikes@upol.cz

International Conference "XX Geometrical Seminar“
Serbia - 2018
1. Introduction

Forty five years ago J. H. Sampson has defined a Laplacian operator Δ_S acting on covariant symmetric tensors [1]. This operator was an analogue of the well known Hodge-de Rham Laplacian Δ_H which acts on exterior differential forms [2]. These two operators Δ_S and Δ_H are self-adjoint elliptic operators and hence their kernels are finite-dimensional vector spaces on a compact Riemannian manifold. In addition, the Sampson operator Δ_S admits the Weitzenböck decomposition formula as well as the Hodge-de Rham Laplacian Δ_H.

In our report, we will consider the little-known Sampson Laplacian Δ_s using the analytical method, due Bochner, of proving vanishing theorems for the null space of a Laplace operator admitting a Weitzenböck decomposition (see [1]; [2]) and further of estimating its lowest eigenvalue (see, for example, [3]).

Theorems and corollaries of the report complement our results of our paper from the following list: [1]; [2]; [3]; [4]. In addition, applications of Sampson Laplacian Δ_s can be find in our paper [1] and [5].

2. Preliminaries

Let \((M, g)\) be a Riemannian manifold of dimension \(n \geq 2\) with the Levi-Civita connection \(\nabla\). Let \(TM\) (resp. \(T^*M\)) be its tangent (resp. cotangent) bundle, and let \(S^p M = S^p (T^*M)\) be the bundles of covariant symmetric \(p\)-tensors on \(M\). The formula

\[
\langle \varphi, \psi \rangle = \frac{1}{p!} \int_M g(\varphi, \psi) \, dv_g, \tag{2.1}
\]

where \(\varphi, \psi \in C^\infty S^p M\) and \(dv_g\) is the volume element of \((M, g)\) determines the \(L^2(M, g)\)-scalar product on \(C^\infty S^p M\).
We will apply the above to the operator
\[\delta^* : C^\infty S^p M \to C^\infty S^{p+1} M \]
of degree 1 such that \(\delta^* = (p + 1) \text{Sym} \nabla \) where \(\text{Sym} : \bigotimes^p T^* M \to S^p M \) is the linear operator of symmetrization. Then there exists its formal adjoint operator
\[\delta : C^\infty S^{p+1} M \to C^\infty S^p M \]
with respect to the \(L^2(M, g) \)-product that is called the divergence operator (see [1, p. 55; 356]).

Sampson has defined in [1, p. 147] the second order operator

$$\Delta_S = \delta \delta^* - \delta^* \delta : C^\infty S^p M \to C^\infty S^p M$$

for an arbitrary Riemannian manifold \((M, g)\). Moreover, it was shown in [1, p. 147] that the operator \(\Delta_S\) has the Weitzenböck decomposition

$$\Delta_S = \bar{\Delta} - \Gamma_p$$ \hspace{1cm} (2.2)

where \(\Gamma_p\) can be algebraically (even linearly) expressed through the curvature \(R\) and Ricci \(\text{Ric}\) tensors of \((M, g)\) and \(\bar{\Delta} = \nabla^* \nabla\) is the Bochner Laplacian (see [2, pp. 53; 356]).

Remark. The Sampson operator can be found in the monograph [1, p. 356] and in the papers from the following list [2]; [3]; [4]. But in fact, we were the first and only who began to study the properties of this operator in details.

[2] Sumitomo T., Tandai K., Killing tensor fields on the standard sphere and spectra of $\text{SO}(n + 1) / (\text{SO}(n – 1) \times \text{SO}(2))$ and $\text{O}(n +1) / (\text{O}(n – 1) \times \text{O}(2))$, Osaka Journal of Mathematics, 20 : 1 (1983), 51-78.

The following properties are the elementary properties of Sampson operator Δ_s on a compact Riemannian manifold (M, g).

(i) The operator Δ_s is a **self-adjoint operator** with respect to the $L^2(M, g)$-product, i.e. $\langle \Delta_s \varphi, \psi \rangle = \langle \varphi, \Delta_s \psi \rangle$ for any $\varphi, \psi \in C^\infty S^p M$.

(ii) The principal symbol σ of Δ_s satisfies the condition $\sigma(\Delta_s)(\theta, x)\varphi_x = -g(\theta, \theta)\varphi_x$ for an arbitrary $\theta \in T_x^* M - \{0\}$. Therefore, by the Sampson operator Δ_s is a **Laplacian** and its kernel is a finite-dimensional vector space on a compact manifold (M, g).

(iii) Two vector spaces $\text{Ker} \, \Delta_s$ and $\text{Im} \, \Delta_s$ are orthogonal complements of each other with respect to the $L^2(M, g)$-product, i.e.

$$C^\infty S^p M = \text{Ker} \, \Delta_s \oplus \text{Im} \, \Delta_s.$$
2. The kernel of the Sampson Laplacian

Let \((M, g)\) be a locally Euclidean manifold then the equation \(\Delta_S \varphi = 0\) is equivalent to the equation \(\sum_k \frac{\partial^2 \varphi_{i_1...i_p}}{(\partial x^k)^2} = 0\) with respect to a local Cartesian coordinate system \(x^1,...,x^n\). This means that all components of this tensor \(\varphi\) are harmonic functions. Therefore, the symmetric tensor \(\varphi \in \ker \Delta_S\) was named in [1, p. 148] as a harmonic symmetric p-tensor on \((M, g)\).

The “energy” of symmetric tensor field φ is given by the formula $E(\varphi) = \frac{1}{2}\langle \varphi, \Delta_s \varphi \rangle$, then the equation $\Delta_s \varphi = 0$ is the condition for a free extremal of $E(\varphi)$ for an arbitrary compact (M, g) (see [1, p. 148]).

In addition, in [1, p. 151] was proved that for a compact Riemannian manifold of constant negative curvature the only harmonic non-zero p-tensor fields are those of the form $const \times \text{Sym}(g \otimes g \otimes ... \otimes g)$.

Other a non-trivial interesting example of a harmonic symmetric tensor can be found in our paper [2].

We recall that the tensor field $\varphi \in C^\infty S^p M$ which satisfies the equation $\delta^* \varphi = 0$ is well known in the theory of general relativity as a symmetric Killing tensor (see, for example, [1] and [2]). Then an arbitrary a divergence-free symmetric Killing p-tensor φ belongs to $\text{Ker } \Delta_s$.

It is easy to verify that an arbitrary trace-free symmetric Killing p-tensor φ is a divergence-free symmetric Killing p-tensor. Therefore, an arbitrary trace-free symmetric Killing p-tensor φ belongs to $\text{Ker } \Delta_s$.

Theorem 2.1. Let φ be a divergence-free (or trace-free) symmetric Killing tensor on a Riemannian manifold (M,g), then it satisfies the following systems of differential equations

(i) $\Delta_s \varphi = 0$;

(ii) $\delta \varphi = 0$.

Conversely, if (M,g) is compact and a tensor field $\varphi \in C^\infty S^p M$ satisfies (i) and (ii), then φ is a divergence-free Killing tensor.

Remark. For $p = 1$, from Theorem 2.1 we obtain Theorem 2.3 on infinitesimal isometrics presented in Kobayashi’s monograph on transformation groups (see [1]).

For the case $p = 1$, the Sampson Laplacian can be rewritten in the form $\Delta_s = \bar{\Delta} - \Gamma_1$ where $\Gamma_1 = Ric$ for the Ricci tensor Ric of (M, g). Therefore, we have the following theorem (see [1]).

Theorem 2.2. The Sampson Laplacian $\Delta_s : C^\infty T^*M \to C^\infty T^*M$ is dual to the Yano Laplacian $\Box : C^\infty TM \to C^\infty TM$ by the metric g.

Remark. The operator $\Box : C^\infty TM \to C^\infty TM$ was defined by Yano for the investigation of local isometric, conformal, affine and projective transformations of compact Riemannian manifolds (see [2, p. 40]).

The vector field ξ on (M, g) is called an infinitesimal harmonic transformation if the one-parameter group $\psi : (t, x) \in \mathbb{R} \times M \rightarrow \psi_t(x) \in M$ of infinitesimal point transformations of (M, g) generated by ξ consists of harmonic diffeomorphisms (see [1]). We have proved in [2] that the following theorem is true.

Theorem 2.3. Vector field ξ is an infinitesimal harmonic transformation on (M, g) if and only if $\Delta_S \varphi = 0$ for the 1-form φ corresponding to ξ under the duality defined by the metric g.

We have proved also that a Killing vector on a Riemannian manifold, holomorphic vector field on a nearly Kählerian manifold and the vector field that transforms a Riemannian metric into a Ricci soliton metric are examples of infinitesimal harmonic transformations (see [1]; [2]). Therefore, all one-forms which corresponding to these vector fields under the duality defined by the metric g belong to the kernel of the Sampson Laplacian Δ_s.

Let ω be an arbitrary one-form such that $\omega \in \text{Ker} \Delta_S$. In accordance with the theory of harmonic maps (see [1]) we define the energy density of the flow on (M, g) generated by the vector field $\xi = \omega^\#$ as the scalar function $e(\xi) = \frac{1}{2}\|\xi\|^2$ where $\|\xi\|^2 = g(\xi, \xi)$. Then the Beltrami Laplacian $\Delta_B e(\xi) := \text{div}(\text{grad} e(\xi))$ for the energy density $e(\xi)$ of an infinitesimal harmonic transformation $\xi = \omega^\#$ has the form (see [2])

$$\Delta_B e(\xi) = \|\nabla \omega\|^2 - \text{Ric}(\xi, \xi). \quad (2.3)$$

We recall that the Ricci curvature of g is quasi-negative if it is non-negative everywhere in a connected open domain $U \subset M$ and it is strictly negative in all directions at some point of U. In this case, $e(\xi)$ is a subharmonic function. Then using the Hopf’s maximum principle (see [1]), we can prove the following

Theorem 2.3. Let (M, g) be a Riemannian manifold and $U \subset M$ be a connected open domain with the quasi-negative Ricci tensor Ric. If the energy density of the flow $e(\xi) = \frac{1}{2} \| \xi \|^2$ generated by $\xi = \omega^#$ for an arbitrary one-form $\omega \in \text{Ker} \Delta_S$ has a local maximum in some point of U, then ω is identically zero everywhere in U.

Remark. Theorem 2.3. is a direct generalization of the Theorem 4.3 presented in Kobayashi’s monograph on transformation groups (see [1, p. 57]) and Wu’s proposition on a Killing vector whose length achieves a local maximum (see [2]).

In addition, we can formulate the following statement, which is a corollary of Theorem 2.3.

Corollary 2.4. The Sampson Laplacian $\Delta_S : C^\infty T^*M \to C^\infty T^*M$ has a trivial kernel on a compact Riemannian manifold (M, g) with quasi-negative Ricci curvature.

Let $\Delta_S : C^\infty S^2 M \to C^\infty S^2 M$ be the Sampson Laplacian acting on the vector space of covariant symmetric 2-tensors $S^2 M$. In this case, the Weitzenböck decomposition formula (2.2) has the form $\Delta_S \varphi = \bar{\Delta} \varphi - \Gamma_2(\varphi)$ where $\Gamma_2(\varphi) = \left(R_{ik} \varphi^k_j + R_{jk} \varphi^k_i \right) - 2R_{ikij} \varphi^{kl}$ for the local components φ_{ij} of $\varphi \in C^\infty S^2 M$, R_{ij} of the Ricci tensor and R_{ijkl} of the curvature tensor R. Let $\varphi \in \text{Ker} \Delta_S$, then direct calculations give us the formula

$$\frac{1}{2} \Delta_B \| \varphi \|^2 = \| \nabla \varphi \|^2 - 2 \sum_{i < j} \sec(e_i \wedge e_j) \left(\mu_i - \mu_j \right)^2$$

(2.4)

for a local orthonormal frame e_1, \ldots, e_n such that $\varphi_x(e_i, e_j) = \mu_i \delta_{ij}$ and for the sectional curvature $\sec(e_i \wedge e_j)$ in the two-direction $e_i \wedge e_j$.

Then using the Hopf’s maximum principle (see [1]), we can prove the following

Theorem 2.4. Let U be a connected open domain of a Riemannian manifold (M, g), φ be a 2-tensor field defined on U such that $\varphi \in \text{Ker} \Delta_s$ everywhere in U. If the section curvature of (M, g) is negative semi-define at any point of U and the scalar function $\|\varphi\|^2$ has a local maximum at some point of U, then φ is invariant under parallel translation in U, i.e. $\nabla \varphi = 0$. If, moreover, $\text{sec} < 0$ at some point of U or (M, g) is an irreducible Riemannian manifold, then φ is constant multiple of g at all points of U.

Based on (2.4) and the Bochner maximum principle (see [1, Theorem 2.2]), we can formulate the statement that is a corollary of our Theorem 2.4.

Corollary 2.5. Let \((M, g)\) be a compact Riemannian manifold \((M, g)\) with nonpositive sectional curvature, then the kernel of the Sampson Laplacian \(\Delta_S : C^\infty S^2 M \to C^\infty S^2 M\) consists of parallel symmetric 2-tensor fields. If the sectional curvature in all directions is less than zero at some point of \((M, g)\) or \((M, g)\) is an irreducible Riemannian manifold, then an arbitrary tensor field which belongs to the kernel of the Sampson Laplacian is constant multiple of \(g\).

We recall here that a complete simply connected nonpositively curved manifold \((M, g)\) is called a Hadamar manifold (see [1, p. 381]). In particular, a Riemannian (globally) symmetric manifold of the non-compact type is a non-trivial example of a Hadamard manifold \((M, g)\), since it is a simply connected Riemannian symmetric manifold with nonpositive (but not identically zero) sectional curvature (see [2, pp. 256; 258]). Based on (2.4) and the Yau theorem on subharmonic function (see [3, p. 663]), we can formulate

Corollary 3.3. Let \(\varphi \) be a symmetric 2-tensor on a Hadamar manifold, in particular on a Riemannian symmetric manifold \((M, g)\) of the non-compact type. If \(\varphi \in \text{Ker} \Delta_S \) and \(\int_M \| \varphi \|^q \, d\text{Vol}_g < +\infty \) at least for one \(q \geq 1 \). Then \(\varphi \) is invariant under parallel translation, i.e., \(\nabla \varphi = 0 \). If in this case the volume of \((M, g)\) is infinite, then the harmonic symmetric 2-tensor \(\varphi \) is identically zero.

Remark. In [3, p. 663] was proved the following theorem: Let \(u \) be a nonnegative subharmonic function on a complete manifold \((M, g)\), then \(\int_M u^q \, d\text{v}_g = \infty \) for \(q > 1 \), unless \(u \) is a constant function \(C \).
3. Spectral properties of the Sampson Laplacian

A real number λ^p, for which there is a symmetric p-tensor $\varphi \in C^\infty S^p M$ (not identically zero) such that $\Delta_S \varphi = \lambda^p \varphi$, is called an eigenvalue of the Sampson Laplacian $\Delta_S : C^\infty S^p M \to C^\infty S^p M$ and the corresponding symmetric p-tensor $\varphi \in C^\infty S^p M$ is called an eigentensor of the Sampson Laplacian Δ_S corresponding to λ^p. All nonzero eigentensors corresponding to a fixed eigenvalue λ^p form a vector subspace of $S^p M$ denoted by $V_{\lambda^p}(M)$ and called the eigenspace of the Sampson Laplacian corresponding to its eigenvalue λ^p.
Using the general theory of elliptic operators on a compact Riemannian manifold \((M, g)\) it can be proved that \(\Delta_S\) has a discrete spectrum, denoted by \(\text{Spec}^{(p)} \Delta_S\), consisting of real eigenvalues of finite multiplicity which accumulate only at infinity (see [1]). In symbols, we have

\[
\text{Spec}^{(p)} \Delta_S = \left\{ 0 \leq |\lambda_1^p| \leq |\lambda_2^p| \leq \ldots \to +\infty \right\}.
\]

In addition, if we suppose that \(\Delta_S : C^\infty T^* M \to C^\infty T^* M\) and the Ricci tensor \(Ric\) is negative everywhere on \((M, g)\) then (see [2])

\[
\text{Spec}^{(1)} \Delta_S = \left\{ 0 < \lambda_1^1 \leq \lambda_2^1 \leq \ldots \to +\infty \right\}.
\]

Theorem 3.1. Let (M, g) be an n-dimensional $(n \geq 2)$ compact and oriented Riemannian manifold and $\Delta_s: C^\infty T^*M \to C^\infty T^*M$ be the Sampson Laplacian.

(i) Suppose the Ricci tensor is negative then an arbitrary eigenvalue λ^1 of Δ_s is positive.

(ii) The eigenspaces of Δ_s are finite dimensional.

(iii) The eigentensors corresponding to distinct eigenvalues are orthogonal.

Theorem 3.2. Let (M, g) be a 2-dimensional compact oriented Riemannian manifold. Then the first eigenvalue λ^1_1 of the Sampson Laplacian $\Delta_s: C^\infty T^*M \to C^\infty T^*M$ is a non-negative number.
Moreover, the following theorem is true (see [1]).

Theorem 3.3. Let \((M, g)\) be an \(n\)-dimensional \((n \geq 2)\) compact oriented Riemannian manifold. Suppose the Ricci tensor \(Ric\) is negative, then the first eigenvalue \(\lambda_1^1\) of the Sampson Laplacian \(\Delta_s: C^\infty T^*M \to C^\infty T^*M\) satisfies the inequality \(\lambda_1^1 \geq 2r\) for the largest (negative) eigenvalue \(-r\) of the Ricci tensor \(Ric\) on \((M, g)\). The equality \(\lambda_1^1 = 2r\) is attained for some harmonic eigenform \(\varphi \in C^\infty T^*M\) and in this case the multiplicity of \(\lambda_1^1\) is less than or equals to the Betti number \(b_1(M)\).

We consider now the Sampson Laplacian $\Delta_S : C^\infty S^2 M \to C^\infty S^2 M$. It has a discrete spectrum, denoted by

$$\text{Spec}^{(2)} \Delta_S = \left\{ 0 \leq |\lambda_1^2| \leq |\lambda_2^2| \leq ... \to +\infty \right\}.$$

Theorem 3.4. Let (M, g) be an n-dimensional ($n \geq 2$) compact and oriented Riemannian manifold and $\Delta_S : C^\infty S^2 M \to C^\infty S^2 M$ be the Sampson Laplacian. Suppose the section curvature is negative defined then an arbitrary eigenvalue λ_α^2 of Δ_S is positive and

$$\text{Spec}^{(2)} \Delta_S = \left\{ 0 < \lambda_1^2 \leq \lambda_2^2 \leq ... \to +\infty \right\}.$$

Let \((M, g)\) be an \(n\)-dimensional compact and oriented Riemannian manifold with sectional curvature bounded above by a strictly negative constant \(-k\). Then the following theorem holds.

Theorem 3.5. Let \((M, g)\) be an \(n\)-dimensional compact and oriented Riemannian manifold with sectional curvature bounded above by a strictly negative constant \(-k\). Then any eigenvalue \(\lambda^2\) of the Sampson Laplacian \(\Delta_S\) satisfies the inequality \(\lambda^2 \geq nk\) for the non-zero eigentensor \(\phi \in C^\infty S^2 M\) such that \(\phi\) corresponds to the eigenvalue \(\lambda^2\) and \(\phi \neq \mu g\) for some smooth scalar function \(\mu\).
Next we will consider the Sampson Laplacian $\Delta_s : C^\infty S^2_0 M \to C^\infty S^2_0 M$ acting on the smooth sections of the vector bundle of trace-free symmetric 2-tensor fields $S^2_0 M$ on a compact Riemannian manifold (M, g). The following obvious statement is true.

Theorem 3.6. The Sampson Laplacian Δ_s maps $S^2_0 M$ to itself.

Let (M, g) be a compact Riemannian manifold with negative sectional curvature. We denote by K_{\max} the maximum of the section curvature of (M, g). In particular, we can consider a compact hyperbolic manifold (\mathbb{H}^n, g_0) with constant sectional curvature equal to -1. In this
case, the first eigenvalue λ^2_1 of the Sampson Laplacian defined on trace-free symmetric 2-tensor fields satisfies the inequality $\lambda^2_1 \geq 2n$.

This proposition is a corollary of the following theorem.

Theorem 3.7. Let (M, g) be an n-dimensional $(n \geq 2)$ compact Riemannian manifold with negative sectional curvature and $\Delta_S : C^\infty S^2_0 M \to C^\infty S^2_0 M$ be the Sampson Laplacian acting on trace-free symmetric 2-tensor fields. Then the first eigenvalue of Δ_S satisfies the inequality $\lambda^2_1 \geq -2n K_{\text{max}}$ for the maximum K_{max} of the sectional curvature of (M, g). If $\lambda^2_1 = -2n K_{\text{max}}$, then the trace-free symmetric 2-tensor field φ corresponding to λ^2_1 is invariant under parallel translation. In
this case, if (M, g) is irreducible then φ is a constant multiplied by the metric g at each point of (M, g).

Thank a lot for your attention!