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Abstract

This paper provides the connection between the Hankel transform and aerating trans-
forms of a given integer sequence. Two different aerating transforms are introduced and
closed-form expressions are derived for the Hankel transform of such aerated sequences.
Combinations of both aerating and Hankel transform are also considered. Our results are
general and can be applied to a wide class of integer sequences. As an application, we
use our tools on the sequence of shifted Catalan numbers (Cn+t)neNO' For that purpose,
we need to evaluate the Hankel and Hankel-like determinants based on the Catalan num-
bers. Our approach is based on the results of Gessel and Viennot [7] and more recent
results of Krattenthaler [10]. We generalize a sequence obtained by the series reversion of
Q(x) = W (studied in our previous paper [2]), and provide the Hankel transform
evaluation of that sequence and its shifted sequences.
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1 Introduction

The Hankel transform of a given sequence a = (ay),,oy, is defined as the sequence h = (h,,)
of Hankel determinants, i.e.

n€eNg

hy, = det ([aiyjlo<ij<n), (n € No) (1)
and denoted by h = H(a). We also denote by H, the (infinite) Hankel matriz of the sequence
a defined by

H, = [aiy;i jen,-
The term “Hankel transform” was first introduced by Layman [11] in 2001. However, many

Hankel determinant evaluations were obtained much earlier, mostly due to their important
combinatorial properties (see for example [3, 8, 15, 16]).



Papers [3, 5, 12] use a method based on orthogonal polynomials (or continued fractions) to
provide a Hankel transform evaluation of different sequences. Such methods are also used in
our recently published paper [2] where we evaluated the Hankel transform of a series reversion

of the function Q(x) = m, as well as of the corresponding shifted sequences.

In this paper, we consider the relationship between the Hankel transform and two different
types of aerating transforms. We will give closed-form expressions establishing a relationship
between the Hankel transform of the original and aerated sequence. We also study a transforma-
tion which is a mixture of the aerating and the Hankel transform (called the Hankel-aerating
transform), and give a closed-form expression for its evaluation. All established results are
general and can be efficiently applied for different types of sequences.

We apply these results to the sequence of shifted Catalan numbers (Cn+t)n€No' For that
purpose, we need to evaluate several Hankel and Hankel-like determinants based on Catalan
numbers (C,),cy,- Our approach is based on the well-known result by Gessel and Viennot
[7] and recent results of Krattenthaler [10]. Those evaluations include the Hankel transform
of (a?Cp, = BCpi1) ey, and of (a?Cyy — BCh12) which provides a direct generalization of
results by Cvetkovi¢, Rajkovi¢ and Ivkovié [5].

n€eNp?

The other application is to the generalization of results obtained in our previous paper
[2]. We generalize the sequence obtained from the series reversion of Tranipaz 8 well as the
corresponding shifted sequences, and provide their Hankel transform evaluations.

2 The Hankel transform of aerated sequences

By the term aerated sequence, we will understand a sequence of the form (¢, 0, ¢1,0, ¢o,0, .. .),
where (c;,) is a given sequence. We are led to define the following aerating transform.

neNg
Definition 2.1. For a given sequence ¢ = (cn)neNO, we define its aerating transformation
p=Alc) by
~ Jcnpp, nois even
b= {O, nis odd

In other words, if p = A(c) then p = (¢, 0,¢1,0,¢2,0,¢3,0,...).

The next theorem shows the connection between the Hankel transform of a given sequence
c and its aerated sequence p = A(c). It is based on the well-known formula for the determinant
of a ”checkerboard” matrix.

Theorem 2.1. Let g = H(p) and h = H(c) where p = A(c) is the aerated sequence of c. Then
det[pirjlosijen = detleipjlocig< 2 - detleirjmoc jc nzt -

In terms of Hankel transforms, this last equality can be written as g, = hjnhi._. , where h* is
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the Hankel transform of the shifted sequence ¢* = (cn+1)n€NO, that is, h* = H(c").
In a similar way, we define another aerating-type transformation which is called the a-

aerating transform and denoted by A(c; a).

Definition 2.2. For a given sequence ¢ = (C”)neN()? we define its a-aerating transform a =
A(c;a) by a, = apn + ppy1, where p = A(c). In other words, if a = A(c;a) then a =
(e, 1, ey, e, e, c3, ucs, . ).



From now on, we denote by [A],,xm a matrix formed by the first m rows and columns of
the (infinite) matrix A. We also assume that matrix indices start from 0.

If ¢ = (cn),en, 18 @ given sequence, then the Hankel transform g = H(a) of the a-aerated
sequence a = A(c; o) has the form
-OéC(] C1 [678] Co
C1 [0718] Co ACo
gn = det[(li+j]osz"j§n =det |®¥C1 C2 QC2 C3
(&) [676)) C3 QC3

Its evaluation is given by the following theorem.

Theorem 2.2. Let g = H(a) and a = A(c;a). Then

Gn = det[aijlo<ij<n = {

2
deta®citj — Ciyjri)o<ij<k—1 - detCivjt]o<ij<i-1,

2
a - det[a’civj1 — Cipjraocijr—1 - det[civslosi i<k,

(n+1)x(n+1)

n=2k—-1

n =2k - (2)

Proof. We distinguish between two cases depending on the parity of n.

Case 1. n = 2k — 1 is odd. We subtract o' times column 2j + 1 from column 2j, for every
7 =0,1,...,k — 1. That leads to the determinant

aco—a e
0
1
AC1 — X "Co

0

det[a;tj]o<ij<n = det

g acp —ate
acy 0
Co QCy — oflcg
QCy 0

C2
(676))
C3
QC3

(D x (1)

By permuting rows and columns appropriately, we get the block diagonal form

det[a;j]o<ij<n = det [

A

*

B

} = det A - det B,

where star (x) denotes the appropriate k x k& matrix which does not have any influence on the
determinant computation. Matrices A and B are given by

-1
A= [aci+j e Ci+j+1]0§i,j§kfla

Now since

B = [aci+j+1]0§i,j§k71-

—k 2 k
det A -det B = o " det[a’ciy; — cijiifo<ij<k—1 - @ det[ciyjiao<ij<r

2
= det[a”cij — Citjii]o<ijer—1 - det[cijia]o<ij<i—1

we get the first case of expression (2).

Case 2. n = 2k is even. Now by subtracting a~! times column 2j from column 2j — 1

(j=1,2,...,k), we get

Qacy 0

g acp—at

acy 0
det[ai+j]0§i7j§n = det o acy — Oé_l

QCo 0

acy 0

cy Cy acy—aley
QaCa 0

C3 C3 QC3— a‘lc4
Qacs 0

QACo
C3
Qacs
acs
QACy

1 1) x (1)



Again we permute rows and columns appropriately to get the block diagonal form
!/
det[ai+j]0§i7j§n = det |:A §/:| = det A, - det B/,

where
= i+7]0<d,5<k> = |ACitj+1 — X Citj+2|0<i,j<k—1-

Now since
det A’ - det B’ = o™ det[ciyjlo<ij<r - @ " det[ocip i1 — Cigjralo<is
€ € =« €U[Citjl0<i,j<k - & €U Ciqj4+1 — Citj4+2]0<i,j<k—1
= o - det[ciyi]o<ij<k - det[a®cip i1 — Civirolo<i
1+3510<4,5<k i+j+1 i+7+2]0<i,j<k—1

we obtain the second part of (2). O

Now consider the matrix I:Ic, formed by adding an additional row and column to the Hankel
matrix H, of the a-acrated sequence a = A(c, a):

0 Co 0 C1 0
Cp Qcy €1 Qcp  Co
- l() pT ] 0 o acg ¢ «acy
Cc1 QC Co ACo C3
0 ¢ aecy c3 acs

Here, we have used p = A(c) and we treat a sequence as an infinite column vector.

Definition 2.3. The Hankel-aerating transform of the sequence ¢ = (Cn)neNo is the sequence

(hn> o, defined by ~
i = det/FL](us 1))

The following theorem provides the evaluation of the Hankel-aerating transform. Note that
we use the notation x(P) = 1 if P is true and x(P) = 0 otherwise.

Theorem 2.3. If p = A(c) and a = A(c; a), then
hy = det[I:I Jnt)x 1) = P - P
where

P det[ciijlo<ijer-1, n=2k—1
1
det[ciyj1]o<ijer—1, n =2k

k—1 !
> (—1)kH (Z azhcz—h> det[citjy(jzn+1]o<ij<h—2, n=2k-1

=0 h=0
P2 - k -1
1)k 2h+1 —
Y (- > o™ oy | detleiigenlosije, n =2k
=1 h=0



Proof. We again distinguish between two cases depending on the parity of n.

Case 1. n = 2k — 1 is odd. By subtracting a times column 2j from column 25 + 1 (j =
0,1,...,k—1), we get

0 Co 0 C1 0

Co 0 C1 0 C2
- 0 ¢ ac; co—ad?c acy
h,, = det

C1 0 Co 0 C3

0 ¢ acy c3—a’cy acs

|- L ) x (e
Permuting rows and columns in the previous determinant yields

o = (—1)* det {A g] — (—1)*det A - det B (3)

where the matrices A and B are equal to

Co C1 e Ck—1
2 2
C1 Cy — QX" Cq Cr—2 — "Cr—1
A = det . . s B = [CH*J']OS?;,]'SK*L
2 2
Ck—1 Cg—2 — Q" Cp—1 Cok—2 — " C2—3

By successively adding o times column j to column j + 1 of the matrix A (j =0,1,...,k—2)
we obtain the following determinant

co ’co+c1 atcy+ a’c + e

C2 C3
det A = det ¢ cs cs

kxk

Expansion along the first row yields

l

k—1
det A = Z(—l)l (Z Oé%Czw) det[Ci+j+x(j2l)+1]0§z‘,j§k—2- (4)
1=0

h=0

Now combining (3) and (4), we obtain the statement of the theorem for n = 2k — 1.

Case 2. n = 2k is even. By subtracting « times column 2j —1 from column 25 (5 = 1,2,..., k),
we obtain ~ _
0 ¢ —acy cy 0
co acyg € —a’cy acy cs—alc
0 C1 0 Co 0
hp = det 1 acy ¢y —a’cy acy c3— a’co
0 Co 0 C3 0
L - L ) x (1)

By permuting rows and columns appropriately, in the previous determinant we obtain

*

/
hy = (—1)" det {A B

} = (~1)"det A’ - det B’ (5)

5



where the matrices A’ and B’ are equal to

0 —aey e —QCp_1
2 2
Co C1 — Q¢ Cr — O"Cp—1
/ /
A" = det . . s B = [CiJerrl]OSi,jSkfl'
2 2
Ck—1 Cp — Q7 Cp—1 Cok—1 — " C2k—2

Again, by adding o? times column j to column j + 1 (j = 0,1,...,k — 1), we obtain the
determinant

0 —acy —a’cy—ac; —a’cy—a’c; — acs

Co C1 Co C3
det A’ =det |[C1 €2 3 Cy
C2 C3 Cq Cs

h (k+1)x (k+1)

which can be expanded along the first row in the following way:

k -1
det A" = Z(—l)lﬂ <Z 042h+101—1_h> det[Citjix(znlo<ij<r-1. (6)

=1 h=0

Now combining (5) and (6), we obtain the statement of the theorem for n = 2k. O

3 Hankel and Hankel-like determinant evaluations based
on Catalan numbers

In this section, we present the evaluation of determinants based on the sequence of Catalan
numbers C' = (Cy,), ¢y, Which will be useful in the rest of the paper. Our main tool is the
following theorem proven by Gessel and Viennot in [7] and restated by Krattenthaler in [10]
(Theorem 3):

Theorem 3.1. [7, 10] Let n be a positive integer and o, v, . .., ,—1 non-negative integers.
Then
— (i+n)!(2a)!
det{Coctlogiyn-1 = H S H 2i)le! (i + )l "
0<i<j<n—1

Corollary 3.2. For every t € Ny, the Hankel transform of the sequence (Cn+t)neNO s given by

t—1

p!(2n + 2p)!
det[C; ii<n—] = —_—
et[Citjttlo<ij<n—1 = ,H) 1 (2n + p)!

The next two corollaries follow directly from Theorem 3.1, by taking a; =i + x(i > 1) and
a; =i+ x(i > 1)+t respectively. Recall that x(P) =1 if P is true and x(P) = 0 otherwise.

Corollary 3.3. For everyl =0,1,...,n — 1 we have

l+n
det[Citjaxiznloijcn-1 = ( 21 >



Corollary 3.4. For everyl =0,1,...,n —1 and every t € Ny we have

l+n)t F 20+ 2p 4+ DI(p+n+ 1+ 1)
2 )AL @p)ln+p+ 1)I2p + 20+ 1)

det[Ciyjix(izn+iloijen—1 = (
The following lemma provides a straightforward generalization of Lemma 4 in [10].
Lemma 3.5. If A = [a;]i jen, IS a given matriz, then
det[Aa; ; + Baip jlo<ijen— = Y A°B"" det[aipy(izs).logijn1-
5=0

where A and B are arbitrary constants.

By combining Theorem 3.1 and Lemma 3.5 we obtain the following generalization of Corol-
lary 5 from [10].

Corollary 3.6. Let n be a positive integer and o, o, . . . , &y, non-negative integers. Then
— (i + n) (2a;)!
det[ACq,+j + BCo+jr1lo<ij<n—1 = H H H ol + )]
0<i<j<n i=
" zn: A’B" *al(ag + n)!
s—1 n
5 (2a;)! Hj:O(aS - aj) Hj:s—i—l(a] — as)

The following corollaries are special cases of Corollary 3.6, which will be useful in our further
considerations. The second corollary provides a direct generalization of the result proven by
Cvetkovié, Rajkovié and Ivkovié [5], concerning the Hankel transform evaluation of the sequence

(Co 4 Crg1) peny-

Corollary 3.7. For every t € Ny and arbitrary constants A and B, the Hankel transform of
the sequence (AC, ¢ + BOn+t+1)neNo is given by
n!(2n + 2t)! ﬁ p'(2n—|—2p Z (s+t)l(n+s+1)!

A’B"3.
(t—l—n)!(t—f—?n)!po N(2n + p)! sl(n — s)!1(2s 4 2t)!

det[AC; 4 j1+4+BCitjer1]o<ij<n—1 =

Corollary 3.8. The Hankel transforms of (a*C,, — 8Ch1)
given by

2 _ 1 / 2n+-3 / 2n+3
det[a Ci+j - ﬁci+j+1]()§i,j§n = 22n+3\/m [(OZ + a2 — 46) — (Oé — a2 —4 ) ]

1
200 o R 2 _ 2n+4 . 2 _ 2n+4
det[a®Ciyjr1 — BCitjtalo<ij<n i/ =13 |:(Oé—|—\/05 40) (v — /a2 —4p) }
(8)

and (a*Chyq — BChis)

are

n&€Np neNg




Proof. Denote by (izn> and <En> the Hankel transforms of (aC,, — BChi1) ey, and
n&€Np neNg
(a?Chyy — BChi2) e, respectively. Taking ¢ = 0,1 in Corollary 3.2, we obtain:

n+1
7 n—s s Qn—s n+s+1
h, :Z(_l) g2 +1<n_3+1)
s=0

; )
7 \ n—s s an—s n+s+2
h, = Z(_l) +1,,2 3 +1< >

g n—s+1
By direct verification, we conclude that both sequences satisfy the following difference equation
Zn — (052 - 2/3)2:71—1 + BQZn—2 = O> (TL Z 2)

with initial values ho = a2 — 8, hy = a* — 3028 + 82 and ho = a2 — 28, hy = o — 402 + 332
respectively. Now expressions (8) follow immediately. O

4 The Hankel transform of aerated shifted Catalan num-
bers
Consider the sequence of shifted Catalan numbers C* = (C}),cn, = (Cntt)pen,> Where t € Ny

is an arbitrary number. We apply the results of Section 2 to compute the Hankel transform of
the aerated sequences O = A(C?) and C4*t = A(C* «). Note that

CAt (Ct70 Ct+17 7"‘)7 CAat (aotact+17a0t+l7ct+2;--->~

Direct application of Theorem 2.1, Theorem 2.2, Corollary 3.2 and Corollary 3.7 yields the
following Hankel transform evaluations.

Corollary 4.1. The Hankel transform of the sequence C = A(C") is given by:

(2t)!(2k + 1)! p!%(2k + 2p)!?

= 2k
0k + i+ 1)L )Pk +p)?
det|C' i,j<n —
(CElosise (2 ).(2k+t)!H p(2k + 2p)" — 2k 1
t(2k +20)! 4 (2p)P(2k + p)1*’ —

Corollary 4.2. The Hankel transform of the sequence C4%t = A(C*; ) is given by

(2(2k + DIKN2ON(2k + 2t + 1) li[ pI2(2k + 2p)!2
dk+oik+ e+ 02 Lgyeers e
i(s+t+1)!(k‘+s+t+1)!
SI(k — 5)1(2s + 20 + 2)!

<_1)k_80628+1, n = 2]{:

CA i,j<n — s=0
Aet O osie 200 1 pl2(2k + 2p)P
t'k:+t' o (2p)1*(2k + p)P?
H!(k t)!
Z(S_l_ )( +S+)(_1)k—sa257 n:2k_1

sl(k — s)!(2s + 2t)!

\ s=0



Corollary 4.3. The Hankel-aerating transform of the sequence C* is given by

hy = det[Het) (ni1)x(ni1) =

( t—1

P22k +p+1t)!
IH(
1

2p)12(2k + p)!
k—
[+k—1\ 11 pthk+l
1)k C =2k —1
Xho (E:a l”h>( > Lop 21+ 1 "
T pl2(2k 4+ p+t+ 1)
(26) L4 2p)P(2k +p+1)!

k -1
_ l—i—k p+k+l—|—1
1)k+—1 2h+1 o — 9
- ( ) (;a Cryt—h—1 2p+2l+1 n

t—

X
\ l

1

5 Generalization of the series reversion of —*—
1—|—oz:c+ﬁ:c

In our previous paper [2], we evaluated the Hankel transform of the series reversion of Q(x) =
m, as well as that of the corresponding shifted sequences. First, let us recall the definition
of the series reversion of a (generating) function f(x) which satisfies f(0) = 0 (see [1]).

Definition 5.1. For a given (generating) function v = f(u) with the property f(0) = 0, the
series reversion is the sequence (Sp),en, such that

u:f_l(v):51’U+$2U2—|—---—|—3n'y"+...’

where uw = f~1(v) is the inverse function of v = f(u). Note that since f(0) = 0, there must

hold sy = f~1(0) = 0.

The general term of the sequence obtained by reverting Q(x) = Hafw is given by (see
[1, 2])
7] n—1
- n—2k—1 ok
> ( o )C’koz B, (10)
k=0
We consider the following generalization (uy(t)),cy, of that sequence:
[257] n_1
(1) = ) G BB, 11
RUEDS ("5 ) Comar1 (1)

Note that (11) reduces to (10) by taking ¢ = 0. Consider the shifted sequences (uj,(t)),,cy, and
(uy (1)) pen, defined by g (t) = uny1(t) and u*(t) = uny2(t). Our previous paper [2] provides
the evaluation of the corresponding Hankel transforms A% (0), A**(0) and h,,(0) using the method
based on orthogonal polynomials [5, 12]. The main results in [2] are the following theorems

(Theorem 4.3, Theorem 4.4, and Corollary 5.4 in [2]):

Theorem 5.1. [2] The Hankel transform of the sequence (u, )neNO s given by
h(0) = pU3) (12)



Theorem 5.2. [2] The Hankel transform of the sequence (uy"), oy, 1 given by

n

h;*(()) B 5(n2 )

QT e [((a+ Va2 —4B)"" — (a — Va? — 4B8)" 2. (13)

Theorem 5.3. [2] The Hankel transform of the sequence (uy), oy, i given by

) = 5 (o Va ) - (o )]

A different approach to Theorems 5.1-5.2; also based on orthogonal polynomials, is given in
a recent paper [4].

In the following sections, we evaluate the Hankel transforms h*(t), h**(t) and h,(t) which
provide generalizations of Theorems 5.1-5.3. The proof is based on the application of the falling
a-binomial transform (Section 6) and results from the previous sections.

6 The falling a-binomial transform
The following transform is a generalization of the well-known binomial transform and was
introduced by Spivey and Steil [14]. We will use it in further considerations.

Definition 6.1. For a given sequence a = (ay)
b= B(a; ) is defined to be the sequence

b, = (Z) a" *ay.
k=0

The following lemma provides an extension to the classical result that the Hankel transform
is invariant under the binomial transform.

neNgs 88 falling a-binomial transformation

Lemma 6.1. For an arbitrary sequence a = (an),cy, and number a, we have H(B(a; o)) =

H(a).

The falling a-binomial transform can be written in the following matrix form

b=B%, B"= [(n) a”_k}
k n,k€Ng

where we treat the sequences a and b as the corresponding column vectors (we also use this
notation in the rest of the paper). We call the matrix B® the a-binomial matriz. The following
lemma shows the connection between the Hankel matrices

H, = [aiyjlijeny,  Hy = [bigjlijen,
and the matrix B¢.

Lemma 6.2. If b = B(a;«) then we have

H, = B“H,(B*)". (15)

10



Proof. Let us start from the general element b,,,,, of the matrix Hy:

- n-+m n+m—t
bpim = Z ) o a;.

t=0

Using the well-known identity ("%™) =37, (7)(,”,) we obtain

t —k
n+m n n - m n n m
bn-i—m _ Z Z <k) (t - k) an+m—tat _ Z (k> < | >Qn+m—k—lak+l
t=0 k=0 1=0 k=0
=2 (k) @ < l )am_l =D (B axr (BY),,,.
1=0 k=0 1=0 k=0
This completes the proof of the lemma. m

7 Hankel transform evaluation of sequences u,(t), u’(¢)
and u*(t)

In this section, we show that the sequences v} (t) and u;*(¢) are the falling a-binomial transforms
of A(c) and A(c; ), where ¢ = (8" Cyn),cn,- We also show that H(u(t)) is equal to the Hankel-
aerated transform of c¢. Using this, we can apply the results of Section 2, Section 3 and Section
4 to evaluate the Hankel transforms of (u;,(t)),cn,s (Un*(f))nen, and (Un(t)), ey, Our main

results are Theorems 7.2-7.4. As a special case of these evaluations (for ¢ = 0), we re-obtain
Theorems 5.1- 5.3, proved in [2].

7.1 The sequence u(t)

be defined by ¢, = f"C,1; and let p = A(c), i.e.

Let the sequence (Cn)neNo

_ Bkc’lﬁ-ta n =2k
Pn=10, n—=2%—1

Recall that u}(¢) can be expressed as follows (directly from (11)):

(3]

0 = ()= Y () =3 ()

k=0 =0

which implies that (u}(t)) B (p; ) and hence h*(t) = H(p) (Lemma 6.1). We also need

the following proposition.

n€eNp =

Proposition 7.1. Let s = (s,),,cy, be an arbitrary sequence and let h = H(s) be its Hankel

transform. Then H ((r”sn) ) = (r”(”“)hn) where r is an arbitrary number.

n€Np n€eNg

Note that the sequence p = A(c) can be expressed as p = (ﬂ"/ ZC’;;"t)neNo where CAf =
A(C") (see Section 4). Hence

n+1
B (t) = detpiylocsj<n = U3 det[CA o, <. (16)

The following theorem is obtained directly from (16) and Corollary 4.1.

11



Theorem 7.2. The Hankel transform (h;,(t)),,cx, of the sequence (uy(t)),en, 8 given by:

(251 (20)!(2k +1)! p?(2k 4 2p)!?
t(2k + ¢+ 1) 14 (2p)2(2k + p)!?

how(t) =
(17)

, Cen 2012k + 1) 1 plP(2k + 2p)?
th—l(t) - ﬁ< ) t!(2/{7 T Qt)! 11 (2]))!2(2k +p)!2

Note that by taking t = 0 we re-obtain the result A} (0) = ﬁ<n;1> of Theorem 5.1.

7.2 The sequence u)*(t)

Let a = A(c; ), i.e. the a-aerating transform of the sequence ¢, = §"C,;. The sequence
a = (an),cy, can be expressed as follows

k _
o {e s
According to (11) we have
(241 (2] n
0= (5" )ar e 3 (5 Ja et = 3 (7)o e
k=0 k=0 1=0

Hence u**(t) = B(a; o) and from Lemma 6.1 we conclude that H(u**(t)) = H(a).
Assume that n = 2k — 1. According to Theorem 2.2 and Proposition 7.1, we obtain
det[a;t;]o<ij<n = det[a® B Cry iy — BT Cotjrirlo<ijer— - det[B 7 Cryjyiii]o<ij<i—1
= BF D det[a?Ciy e — BCitjrerilozij<iot - det[Citjrerilo<ij<i

(19)
Similarly, for n = 2k we have

det[aiJrj]Ogi,jgn = acdet [a25i+j+t+1ci+j+t+l - Bi+j+20i+j+t+2]0§i,j§k71 : det[ﬂi+j+1ci+j+t]0§i,j§k

= O‘Bk(%ﬂ) det [0‘2Cz‘+j+t+1 - 5Ci+j+t+2]0§i,j§k71 : det[ci+j+t]0§i,j§k-
(20)
Now using Corollary 3.2 and Corollary 3.7 we get the following theorem.

Theorem 7.3. The Hankel transform (h'*(t)) of the sequence (u)(t)), e, 15 given by

neNy
B0+ pl2(2k + 2p)!2
tik + 1)t -5 (2p)12 (2K + p)!?

hyp_y(t) = preF=

<—1>k_86k_5(12s,

(5 + )k + 5 +1)!

1k — 5)1(2s + 20)]

h**(t):ﬁk(2k+1)2(2k+ EN(2)!(2k + 2t + 1)! H p1?(2k + 2p)!?
2k 1k + )12k +t + 1)12 3 (2p)12(2k + p)P2
k
s+t+ Whk+s+t+1)! ks okes 2

1 s s s+1'
XZ G@sraray YDA

s=0
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Taking t = 0 in (19) and (20) yields

ha(0) = ﬁk(%_l) det[aQC’iﬂ — BCitj1]o<ij<i—1 n=2k-—1
! affF ) det[a?Ciyjrr — BCitjtolo<ij<k1, n =2k

and using Corollary 3.8 we re-obtain Theorem 5.2.

7.3 The sequence u,(t)

We have already proved that u*(t) = B (p;«) and u**(t) = B(a; ). The first equation can
be written in matrix notation as u*(t) = B®p. Furthermore, Lemma 6.2 yields Hywq) =
B°H,(B*)T and the following matrix equality holds:

]- 0 pT 1 _ O pT(Ba>T _ O (u*<t))T _ H (22)
B| [p H. | (B)T| ™ B BH.(BY)T| "~ [w(t) Hyn|
Hence, the determinant of the (n + 1) x (n + 1) principal minor of H, ), formed by the rows
and columns with indices 1,2,...,n + 1, is equal to the same minor of the matrix

N T
H;:P p}.
p H,
In other words, h,(t) is equal to the n-th member of the Hankel-aerating transform of the
sequence (c;,) and can be evaluated using Theorem 2.3.

n€eNg?

Theorem 7.4. The Hankel transform (h,(t)), oy, of the sequence (u, (1)), ey, 15 given by:

t' S22k 4 p + 1)
B (k—1)(2k— 1)
2-1(t) = B H (2p)12(2k + p)!

k—1 l t
L I +k—1 k41
1)k 2h gh—1-hey
x Y (=) (ZO‘ B Lt—h /RS ETE TS

=0 h=0

(23)

P2k +p+t+1)
h k(2k—1) p-
(1) = B %'Ilzpﬂ2k+p+w

k -1
1 [+ k p +k+1+1
% Z(_l)k+l+1 (Z a2h+15k 1 hCH—t—h—l) ( ) ; +2[+ :
=1 p

h=0

Proof. We distinguish two cases depending on the parity of n.
Case 1. n =2k — 1 is odd. According to Theorem 2.3, it holds that ho,_1(t) = P; - P, where

Py = detlciyjlo<ijer—1 = det[B T Coy i ddo<ijer—1 = BHETY det[Ciyjiilocijer (24)

and

N

—1 l
Py (=)™ (Z QQhCZ—h> det[citjix(>n+1lo<ij<h—2

=0 h=0

(25)

e

-1

I\
o

l
1) (Z O‘Qhﬁl_hclﬂ—h) B R det[Cr (20441 )0 j<k—2-
h=0
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Using Corollary 3.2 and Corollary 3.4, together with (24) and (25), we get the expression for
th_l(t) in (23)
Case 2. n = 2k is even. Now hg(t) = Py - P, where

P = det[ﬁwﬁ z+j+t+1]0<zj<k 1 —ﬁ det[ci+j+t+1]0§i,j§k—1 (26)

and

k -1
_ k-‘rl-i-l 2h+1
=> (- ( o Czlh> det[citjixznlosij<k-

=1 h=0

(27)

k -1
—1— 2_
(_1)k+l+1< ot h0l+t—1—h> B ldet[Ci+j+x(jzl)+t}ogi,jgk—1-
=1

l h=0

Similarly, using Corollary 3.2 and Corollary 3.3, together with (26) and (27), we get the ex-
pression for hoy(t) in (23). O

In the special case t = 0, expression (23) reduces to:

= l I+k
h% 1(0) )(2k—1) Z k+l (Z a%ﬂk_h_lcl—h) (zl i 1)

1=0 h=0

k -1
Che [+ K
hax (0) = BEEED Z k+l+1< a2+ gh=h ICllh> ( y )

=1 h=0

Proof of Theorem 5.3. We can rewrite expressions (28) as follows (exchanging the order of
summation):

[+ k
B _ plk—1)(2k—1) 2h pk—1—h k+z -
2k-1(0) = B Z B Z Ci—n 9 + 1

h=0 (29)

[+ k
k(2k—1) 2h-+1 pk—1—h k+l+1
h2k 5 E « B E Ci- —h( 9 )

l=h+1

Now let z, = 57(’2‘);%(0) and in the second equation of (29) decrease the bounds for by 1.
By direct verification we conclude that z, satisfies the three-term linear difference equation
Znto — Zpi1 + Pz, = 0 for all n € Ny, which directly implies the expression (14) in Theorem

i) =802 = 0 ) (s V1)

5.3:
2n\/a? —4p
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