Re-nnd solutions of the matrix equation $AXB = C$

Dragana S. Cvetković-Ilić

Abstract

In this article we consider Re-nnd solutions of the equation $AXB = C$ with respect to X, where A, B, C are given matrices. We give necessary and sufficient conditions for the existence of Re-nnd solutions and present a general form of such solutions. As a special case when $A = I$ we obtain the results from paper of J. Gross (Explicit solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl. 289 131-134 (1999)).

1 Introduction

Let $C^{n \times m}$ denote the set of complex $n \times m$ matrices. I_n denotes the unit matrix of order n. By A^*, $\mathcal{R}(A)$, $\text{rank}(A)$ and $\mathcal{N}(A)$, we denote the conjugate transpose, the range, the rank and the null space of $A \in C^{n \times m}$.

The Hermitian part of X is defined as $H(X) = \frac{1}{2}(X + X^*)$. We will say that X is Re-nnd (Re-nonnegative definite) if $H(X) \geq 0$ and X is Re-pd (Re-positive definite) if $H(X) > 0$.

The symbol A^- stands for an arbitrary generalized inner inverse of A, i.e. A^- satisfies $AA^- A = A$. By A^\dagger we denote the Moore-Penrose inverse of $A \in C^{n \times m}$, i.e. the unique matrix $A^\dagger \in C^{m \times n}$ satisfying

$$AA^\dagger A = A, \quad A^\dagger AA^\dagger = A^\dagger, \quad (AA^\dagger)^* = AA^\dagger, \quad (A^\dagger A)^* = A^\dagger A.$$
For some important properties of generalized inverses see [5] and [6].

Many authors have studied the well-known equation

\[AXB = C \]

with the unknown matrix \(X \), such that \(X \) belongs to some special class of matrices. For example, in [19] and [7] the existence of reflexive and anti-reflexive, with respect to a generalized reflection matrix \(P \), solutions of the matrix equation (1) was considered, while in [15], [9], [18], [20] necessary and sufficient conditions for the existence of symmetric and antisymmetric solutions of the equation (1) were investigated.

The Hermitian nonnegative definite solutions for the equation \(AXA^* = B \) were investigated by C. G. Khatri and S. K. Mitra [15], J.K. Baksalary [4], H. Dai and P. Lancaster [10], J. Gross [12], X. Zhang and M. Y. Cheng [24], X. Zhang [25].

L.Wu [22] studied Re-positive definite solutions of the equation \(AX = C \) and L. Wu and B. Cain [23] found the set of all complex Re-nnd matrices \(X \) such that \(XB = C \) and presented a criterion for Re-nndness. J. Gross [11] gave an alternative approach, which simultaneously delivers explicit Re-nnd solutions and gave a corrected version of some results from [23]. Some results from [23] were extended in the paper of Q. Wang and C. Yang [21], in which authors presented criteria for \(2 \times 2 \) and \(3 \times 3 \) partitioned matrices to be Re-nnd, found necessary and sufficient conditions for the existence of Re-nnd solutions of the equation (1) and derived an expression for these solutions. In the paper of A. Dajić and J. Koliha [3], for the first time, a general form of Re-nnd solutions of the equation \(AX = B \) is given, where \(A \) and \(B \) are given operators between Hilbert spaces. Beside these papers many other papers have dealt with the problem of finding the Re-nnd and Re-pd solutions of some other forms of equations.

In this paper, we first consider the matrix equation

\[AXA^* = C, \]

where \(A \in C^{n \times m}, C \in C^{n \times n} \), and find necessary and sufficient conditions for the existence of Re-nnd solutions. Also, we present a general form of these solutions. Using this result, we get necessary and sufficient conditions for the equation

\[AXB = C, \]

where \(A \in C^{n \times m}, B \in C^{m \times n} \) and \(C \in C^{n \times n} \), to have a Re-nnd solution. This way, the results of [23] and [11] follow as a corollary and a general
form of those solutions is given in addition. As far as the author is aware, this is the first time necessary and sufficient conditions for the existence of a Re-nnd solutions of the equation $AXB = C$ has been given in terms of g-inverses.

Now, we will state some well-known results which will be very often used in the next section.

Theorem 1.1 ([17]) Let $A \in C^{n \times m}$, $B \in C^{p \times r}$ and $C \in C^{n \times r}$. Then the matrix equation

$$AXB = C$$

is consistent if and only if, for some A^{-}, B^{-},

$$AA^{-}CB^{-}B = C,$$ \hspace{1cm} (2)

in which case the general solution is

$$X = A^{-}CB^{-} + Y - A^{-}AYBB^{-},$$ \hspace{1cm} (3)

for arbitrary $Y \in C^{m \times p}$.

The following result was derived by Albert [1] for block matrices, by Cvetković-Ilić et al [8] for C^{*} algebras, for the special case of the Moore-Penrose inverse and by Dajić and Koliha [3] for operators between different Hilbert spaces. Here, we will give the basic version proved in [1].

Theorem 1.2 Let $M \in C^{(n+m) \times (n+m)}$ be a hermitian block-matrix given by

$$M = \begin{bmatrix} A & B \\ B^{*} & D \end{bmatrix},$$

where $A \in C^{n \times n}$ and $D \in C^{m \times m}$. Then, $M \geq 0$ if and only if

$$A \geq 0, \quad AA^{\dagger}B = B, \quad D - B^{*}A^{\dagger}B \geq 0.$$

Anderson and Duffin [2] define parallel sum of matrices, for a pair of matrices of the same order as

$$A : B = A(A + B)^{-}B.$$

It is clear that for this definition to be meaningful, the expression $A(A + B)^{-}B$ must be independent of the choice of the g-inverse $(A+B)^{-}$. Hence, a
pair of matrices A and B will be said to be parallel summable if $A(A+B)^{-}B$ is invariant under the choice of the inverse $(A+B)^{-}$, that is, if

$$
\mathcal{R}(A) \subseteq \mathcal{R}(A + B), \quad \mathcal{R}(A^*) \subseteq \mathcal{R}(A^* + B^*),
$$
or equivalently

$$
\mathcal{R}(B) \subseteq \mathcal{R}(A + B), \quad \mathcal{R}(B^*) \subseteq \mathcal{R}(A^* + B^*).
$$
Note that

$$
\mathcal{R}(A) \subseteq \mathcal{R}(B) \iff BB^-A = A.
$$

By Theorem 2.1 [13],

$$
\mathcal{R}(A) \subseteq \mathcal{R}(B) \iff AA^* \leq \lambda^2 BB^*, \text{ for some } \lambda \geq 0,
$$
so for the non-negative definite matrices A and B, we have that

$$
A \leq A + B \iff \mathcal{R}(A^{1/2}) \subseteq \mathcal{R}((A + B)^{1/2}),
$$
which implies $\mathcal{R}(A) \subseteq \mathcal{R}((A + B)^{1/2})$ or equivalently

$$
(A + B)^{1/2}((A + B)^{1/2})^\dagger A = A.
$$

Now,

$$
(A + B)(A + B)^\dagger A = ((A + B)^{1/2}((A + B)^{1/2})^\dagger)^2 A = A,
$$
which is equivalent to $\mathcal{R}(A) \subseteq \mathcal{R}(A + B)$.

Hence, non-negative definite matrices A and B are parallel summable. Furthermore, in [2] it was proved that for a pair of parallel summable matrices holds

$$
A : B = B : A,
$$
i.e.

$$
A(A + B)^{-}B = B(A + B)^{-}A. \tag{4}
$$
2 Results

Next result was first proved by L. Wu and B. Cain [23] and later restated by J. Gross [11]. It gives necessary and sufficient conditions for the matrix equation $AX = B$ to have a Re-nnd solution X, where A, B are given matrices of suitable size and presents a possible explicit expression for X.

Theorem 2.1 Let $A \in C^{n \times m}$, $B \in C^{n \times m}$. There exists a Re-nnd matrix $X \in C^{m \times m}$ satisfying $AX = B$ if and only if $AA^\dagger B = B$ and AB^* is Re-nnd.

From the proof of this theorem we can see that

$$X_0 = A^\dagger C - (A^\dagger C)^* + A^\dagger AC^* (A^\dagger)^*$$

is one of Re-nnd solutions of $AX = B$. Also, in the [11] the author mentions that any matrix of the form

$$X = X_0 + (I - A^\dagger A)Y(I - A^\dagger A),$$

with $Y \in C^{m \times m}$ which is Re-nnd is also Re-nnd solution of $AX = B$, in the case where such solutions exist, but he didn’t present a general form of such solutions. Our main aim is to generalize these results to the equation $AXB = C$ and to present a general form of Re-nnd solutions of it.

First, we will consider the equation

$$AXA^* = C$$

and find necessary and sufficient conditions for the existence of Re-nnd solutions.

The next auxiliary result presents a general form of a solution X of (5) which satisfies $H(X) = 0$.

Lemma 2.1 If $A \in C^{n \times m}$, then $X \in C^{m \times m}$ is a solution of the equation

$$AXA^* = 0$$

which satisfies $H(X) = 0$ if and only if

$$X = W(I - A^\dagger A) - (I - A^\dagger A)W^*,$$

for some $W \in C^{m \times m}$.

5
Proof. Denote by \(r = \text{rank}(A) \). Let us suppose that \(X \) is a solution of the equation (6) and \(H(X) = 0 \). Using a singular value decomposition of \(A = U^* \text{Diag}(D,0)V \), where \(U \in \mathbb{C}^{n \times n} \), \(V \in \mathbb{C}^{m \times m} \) are unitary and \(D \in \mathbb{C}^{r \times r} \) is an invertible matrix, we have that

\[
A^\dagger = V^* \text{Diag}(D^{-1},0)U \quad \text{and} \quad X = V^* \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} V,
\]

for some \(X_1 \in \mathbb{C}^{r \times r} \) and \(X_4 \in \mathbb{C}^{(m-r) \times (m-r)} \).

From \(AXA^* = 0 \) we get that \(X_1 = 0 \) and, by \(H(X) = 0 \), that \(X_3 = -X_2^* \) and \(H(X_4) = 0 \). Hence,

\[
X = V^* \begin{bmatrix} 0 & X_2 \\ -X_2^* & X_4 \end{bmatrix} V.
\]

Taking into account that \(H(X_4) = 0 \), for \(W = V^* \begin{bmatrix} I & X_2 \\ 0 & X_4/2 \end{bmatrix} V \), we have

\[
X = W(I - A^\dagger A) - (I - A^\dagger A)W^*.
\]

In the other direction we can easily check that for arbitrary \(W \in \mathbb{C}^{m \times m} \), \(X \) defined by (7) is a solution of the equation (6) which satisfies \(H(X) = 0 \). \(\square \)

Theorem 2.2 Let \(A \in \mathbb{C}^{m \times m} \), \(C \in \mathbb{C}^{n \times n} \) be given matrices such that the equation (5) is consistent and let \(r = \text{rank}H(C) \). There exists a Re-nnd solution of the equation (5) if and only if \(C \) is Re-nnd. In this case the general Re-nnd solution is given by

\[
X = A^n C(A^n)^* + (I - A^-A)UU^*(I - A^-A)^* + W(I - A^\dagger A) - (I - A^\dagger A)W^*
\]

with

\[
A^n = A^- + (I - A^-A)Z((H(C))^{1/2})^-,
\]

where \(A^-,(H(C))^{1/2}^- \) are arbitrary but fixed generalized inverses of \(A \) and \((H(C))^{1/2} \), respectively, \(Z \in \mathbb{C}^{m \times n} \), \(U \in \mathbb{C}^{m \times (m-r)} \), \(W \in \mathbb{C}^{m \times m} \) are arbitrary matrices.

Proof. If \(X \) is a Re-nnd solution of the equation (5), then

\[
AH(X)A^* = H(C) \geq 0.
\]
In the other direction, if \(C \) is Re-nnd, then \(X_0 = A^−C(A^−)^* \) is Re-nnd solution of the equation (5).

Let us prove that a representation of the general Re-nnd solution is given by (8). If \(X \) is defined by (8), then \(X \) is Re-nnd and \(AXA^* = AA^−C(AA^−)^* = C \).

If \(X \) is an arbitrary Re-nnd solution of (5), then \(H(X) \) is a hermitian nonnegative-definite solution of the equation

\[
AZA^* = H(C),
\]

so, by Theorem 1 [12],

\[
H(X) = A^=H(C)(A^=)^* + (I − A^−A)UU^*(I − A^−A)^*,
\]

where \(A^= \) is given by (9), for some \(Z \in C^{m\times n} \) and \(U \in C^{m\times(m−r)} \).

Note that,

\[
H(X) = H(A^=C(A^=)^* + (I − A^−A)UU^*(I − A^−A)^*),
\]

implying

\[
X = A^=C(A^=)^* + (I − A^−A)UU^*(I − A^−A)^* + Z,
\]

where \(H(Z) = 0 \) and \(AZA^* = 0 \). Using Lemma 2.1, we have that

\[
Z = W(I − A^†A) − (I − A^†A)W^*,
\]

for some \(W \in C^{m\times n} \). Hence, we get that \(X \) has a representation as in (8).

Now, let us consider the equation

\[
AXB = C \tag{10}
\]

where \(A \in C^{n\times m} \), \(B \in C^{m\times n} \) and \(C \in C^{n\times n} \) are given matrices and find necessary and sufficient conditions for the existence of a Re-nnd solution.

Without loss of generality we may assume that \(n = m \) and that matrices \(A \) and \(B \) are both nonnegative definite. This follows from the fact that whenever the equation (10) is solvable then \(X \) is a solution of that equation if and only if \(X \) is a solution of the equation \(A^AXBB^* = A^CB^* \). Hence, from now on, we assume that \(A \) and \(B \) are nonnegative definite matrices from the space \(C^{n\times n} \).

The next theorem is the main result of this paper which presents necessary and sufficient conditions for the equation (10) to have a Re-nnd solution.
Theorem 2.3 Let $A, B, C \in C^{n \times n}$ be given matrices such that equation (10) is solvable. There exists a Re-nnd solution of (10) if and only if

$$T = B(A + B)^{-}C(A + B)^{-}A$$

(11)
is Re-nnd, where $(A + B)^{-}$ is a g-inverse of $A + B$. In this case a general Re-nnd solution is given by

$$X = (A + B)^{*}(C + Y + Z + W)((A + B)^{*})^{*}$$
$$+ (I - (A + B)^{-}(A + B))UU^{*}(I - (A + B)^{-}(A + B))^{*}$$
$$+ Q(I - (A + B)^{†}(A + B)) - (I - (A + B)^{†}(A + B))Q^{*},$$

(12)

where Y, Z, W are arbitrary solutions of the equations

$$Y(A + B)^{-}B = C(A + B)^{-}A,$$
$$A(A + B)^{-}Z = B(A + B)^{-}C,$$
$$A(A + B)^{-}W(A + B)^{-}B = T,$$

(13)
such that $C + Y + Z + W$ is Re-nnd, $(A + B)^{*}$ is defined by

$$(A + B)^{*} = (A + B)^{-} + (I - (A + B)^{-}(A + B))P((H(C + Y + Z + W)^{1/2})^{-},$$

where $U \in C^{n \times (n-r)}$, $Q \in C^{n \times n}$, $P \in C^{n \times n}$ are arbitrary, $r = \text{rank}(C + Y + Z + W)$.

Proof. Denote by

$$E = (A + B)^{-}B, \quad F = C(A + B)^{-}A,$$
$$K = A(A + B)^{-}, \quad L = B(A + B)^{-}C.$$

Now, equations (13) are equivalent to

$$YE = F, \quad KZ = L, \quad KWE = T.$$

(14)

Using (4) and the fact that E is g-invertible and $E^{-} = B^{-}(A + B)$, we have that

$$FE^{-}E = C(A + B)^{-}AB^{-}(A + B)(A + B)^{-}B$$
$$= C(A + B)^{-}AB^{-}B = CB^{-}B(A + B)^{-}AB^{-}B$$
$$= CB^{-}A(A + B)^{-}BB^{-}B = CB^{-}A(A + B)^{-}B$$
$$= CB^{-}B(A + B)^{-}A = C(A + B)^{-}A = F,$$
which implies that the equation \(YE = F \) is consistent. In a similar way, we can prove that the other two equations from (14) are consistent. Furthermore, \(T^* = F^*E = KL^* \) is Re-nnd which implies, by Theorem 2.1, that the first two equations from (14) have Re-nnd solutions.

Now, suppose that the equation (10) has a Re-nnd solution \(X \). Then

\[
H(T) = H(B(A + B)AXB(A + B)A) \\
= (B(A + B)A)H(X)(B(A + B)A)^* \geq 0.
\]

Conversely, let \(T \) be Re-nnd. We can check that

\[
X_0 = (A + B)(C + Y + Z + W)(A + B)^\text{−}
\]

is a solution of the equation (10), where \(Y, Z, W \) are arbitrary solutions of the equations (14). This follows from

\[
AX_0B = (A + B)(A + B)^\text{−}C(A + B)^\text{−}(A + B) \\
= (A + B)(A + B)^\text{−}AA^\text{−}CB^\text{−}B(A + B)^\text{−}(A + B) \\
= AA^\text{−}CB^\text{−}B = C.
\]

Now, we have to prove that for some choice of \(Y, Z, W \), matrix \(C + Y + Z + W \) is Re-nnd which would imply that \(X_0 \) is Re-nnd.

Let

\[
Y = FE^\text{−} - (FE^\text{−})^* + (E^\text{−})^*F^*EE^\text{−} + (I - EE^\text{−})^*(I - EE^\text{−})^*, \\
Z = K^\text{−}L - (K^\text{−}L)^* + K^\text{−}KL^*(K^\text{−})^* + (I - K^\text{−}K)Q(I - K^\text{−}K)^*, \\
W = K^\text{−}TE^\text{−} - (I - K^\text{−}K)S - S(I - EE^\text{−}),
\]

where \(Q = (C^* - K^\text{−}T^*E^\text{−})(C^* - K^\text{−}T^*E^\text{−})^* \) and \(S = K^\text{−}KC^* + C^*EE^\text{−} \). Obviously, \(Y, Z, W \) are solutions of the equations (14) and

\[
H(Y) = (E^\text{−})^*H(T)E^\text{−} + (I - EE^\text{−})^*(I - EE^\text{−}), \\
H(Z) = K^\text{−}H(T)(K^\text{−})^* + (I - K^\text{−}K)H(Q)(I - K^\text{−}K)^* \\
H(W) = K^\text{−}TE^\text{−} + (E^\text{−})^*T^*(K^\text{−})^* \\
- H(C^*EE^\text{−} + K^\text{−}KC^* - 2K^\text{−}T^*E^\text{−}).
\]

Using

\[
K^\text{−}KK^\text{−}T^*E^\text{−} = K^\text{−}KK^\text{−}KL^*E^\text{−} = K^\text{−}KL^*E^\text{−} = K^\text{−}T^*E^\text{−}, \\
K^\text{−}T^*E^\text{−}EE^\text{−} = K^\text{−}F^*EE^\text{−}EE^\text{−} = K^\text{−}F^*EE^\text{−} = K^\text{−}T^*E^\text{−}, \\
KC^*E = KL^* = T^*.
\]
we compute,

\[H(C + Y + Z + W) = ((E^-)^* + K^-)H(T)((E^-)^* + K^-)^* \]

\[+ \begin{bmatrix} (I - EE^-)^* & (I - K^-K) \end{bmatrix} D \begin{bmatrix} I - EE^- \\ (I - K^-K)^* \end{bmatrix}, \]

where \(D = \begin{bmatrix} I & C - (E^-)^*T(K^-)^* \\ C^* - K^-T^*E^- & H(Q) \end{bmatrix}. \) By Theorem 1.2 it follows that \(D \) is nonnegative definite, so \(H(C + Y + Z + W) \geq 0. \)

Hence, with such a choice of \(Y, Z, W \), it can be seen that \(X_0 \) defined by (15) is Re-nnd solution of (10). So, we proved the sufficient part of the theorem.

Let \(X \) be an arbitrary Re-nnd solution of (10). It is evident that \(Y = AXA, Z = BXB \) and \(W = BXA \) are solutions of (14), and that

\[(A + B)X(A + B) = C + Y + Z + W\]

is Re-nnd. Now, using Theorem 2.2 we get that \(X \) has the representation (12). □

Let us mention that, if we apply Theorem 2.3 to the equation

\[AX = C, \]

we get as a corollary, the Theorem 2.1 from [11].

Note that if the equation \(AX = C \) is consistent then \(X \) is a solution of it if and only if \(A^*AX = A^*C \). By Theorem 2.3, we get that there exists a Re-nnd solution of the equation \(AX = C \) if and only if

\[T = (A^*A + I)^{-1}A^*C(A^*A + I)^{-1}A^*A \]

is Re-nnd. Note that in this case \((I + A^*A)\) is invertible matrix.

Let us prove that \(T \) is Re-nnd if and only if \(CA^* \) is Re-nnd. By

\[(A^*A + I)^{-1}A^*A = A^*A(A^*A + I)^{-1}, \]

we have that

\[T = (A^*A + I)^{-1}A^*(CA^*)((A^*A + I)^{-1}A^*)^*, \]

i.e.

\[H(T) = ((A^*A + I)^{-1}A^*)H(CA^*)((A^*A + I)^{-1}A^*)^*. \]
From the last equality, $H(CA^*) \geq 0 \Rightarrow H(T) \geq 0$.

Now, suppose that $H(T) \geq 0$. Because of the consistence of the equation $AX = C$, it follows that $AA^\dagger C = C$ which implies that

\[
(A^\dagger)^*(A^* A + I)T((A^\dagger)^*(A^* A + I))^* \\
= (A^\dagger)^* A^* CA^* A A^\dagger = AA^\dagger CA^* = CA^*
\]

i.e.

\[
H(CA^*) = ((A^\dagger)^*(A^* A + I))H(T)((A^\dagger)^*(A^* A + I))^* \geq 0.
\]

References

Address:
Dragana S. Cvetković-Ilić:
Faculty of Sciences and Mathematics,
Department of Mathematics,
University of Niš,
Višegradska 33,
18000 Niš,
Serbia
E-mail: gagamaka@ptt.yu