Weighted generalized inverses of partitioned matrices in Banachiewicz-Schur form

Dragana S. Cvetkovic

Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, Višegradska 33, 18000 Niš, Serbia

Bing Zheng

Department of Mathematics, Lanzhou University, Lanzhou, 730000, People’s republic of China

Abstract

In this paper the conditions under which the weighted generalized inverses $A^{(1,4M)}$, $A^{(1,4N)}$, $A^†_{M,N}$ and $A^{d,W}$ can be expressed in Banachiewicz-Schur form are considered and some interesting results are established. This contributes to certain recent results obtained by J.K.Baksalary and G.P.Styan [2] and Y.Wei[15] and it is an extension of their works.

2000 Mathematics Subject Classification: 15A10

Key words: Banachiewicz-Schur form; weighted Moore-Penrose inverse; weighted Drazin inverse; Schur complement

*Corresponding author.
E-mail: dragana@pmf.pmf.ni.ac.yu; gagamaka@ptt.yu
1 Introduction

Let $C^{n \times m}$ denote the set of all complex $n \times m$ matrices. I_n denotes the unit matrix of order n. By $A^* \in C^{m \times n}$ we denote the conjugate transpose matrix of $A \in C^{n \times m}$. Let us recall that the Moore-Penrose inverse of $A \in C^{n \times m}$ is the unique matrix $A^\dagger \in C^{m \times n}$ which satisfies

$$AA^\dagger A = A, \quad A^\dagger AA^\dagger = A^\dagger, \quad (AA^\dagger)^* = AA^\dagger, \quad (A^\dagger A)^* = A^\dagger A.$$

The Drazin inverse of $A \in C^{n \times n}$ is the matrix $A_D \in C^{n \times n}$ which satisfies

$$A^{k+1}X = A^k, \quad XAX = X, \quad AX =XA,$$

for some nonnegative integer k. The least k is the index of A, denoted by $\text{ind}(A)$. Generalizing the Moore-Penrose and the Drazin inverse, the weighted Moore-Penrose inverse and the weighted Drazin inverse are defined as follows:

Definition 1.1 Let $A \in C^{n \times m}$ and let $M \in C^{n \times n}$ and $N \in C^{m \times m}$ be positive definite. The unique matrix $X \in C^{m \times n}$ which satisfies

$$AXA = A, \quad XAX = X, \quad (MAX)^* = MAX, \quad (NXA)^* = NXA, \quad (1)$$

is called the weighted Moore-Penrose inverse of A and it is denoted by $A_{M,N}^\dagger$.

Definition 1.2 If $A \in C^{n \times m}$ and $W \in C^{m \times n}$ are complex matrices, then the unique solution $X \in C^{n \times m}$ of the equations

$$(AW)^{k+1}XW = (AW)^k, \quad XWAWX = X, \quad AWX = XWA, \quad (2)$$

where $k = \text{ind}(AW)$, is called the W-weighted Drazin inverse of A and it is denoted by $A_{d,w}^d$.

Obviously for $M = I_n$ and $N = I_m$ the weighted Moore-Penrose inverse of A is the Moore-Penrose inverse of A. If $m = n$ and $W = I_n$, then matrix X which satisfies (2) is the Drazin inverse of A. It is well-known that $A_{M,N}^\dagger = N^{-1/2}(M^{1/2}AN^{-1/2})^\dagger M^{1/2}$ and $A_{d,w}^d = [(AW)^D]^2A$. Some interesting properties of weighted Moore-Penrose and the weighted Drazin inverse, among other papers, are investigated in [9], [13].
For $A \in C^{m \times n}$, the set of inner, outer, least-squares weighted generalized and minimum-norm weighted generalized inverses, respectively are given by:

\[
A\{1\} = \{ X \in C^{m \times n} : AXA = A \},
A\{2\} = \{ X \in C^{m \times n} : XAX = X \},
A\{1,3(M)\} = \{ X \in C^{m \times n} : AXA = A, (MAX)^* = MAX \},
A\{1,4(N)\} = \{ X \in C^{m \times n} : AXA = A, (NXA)^* = NXA \},
\]

where $M \in C^{n \times n}$ and $N \in C^{m \times m}$ are positive definite matrices.

In this paper we consider matrix $A \in C^{(m+p) \times (n+q)}$ partitioned as

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix},
\]

(3)

where $A_{11} \in C^{m \times n}$ and $A_{22} \in C^{p \times q}$. We use the following definition of the generalized Schur complement.

Definition 1.3 For a matrix $A \in C^{(m+p) \times (n+q)}$ given by (3) the generalized Schur complement of A in symbol $S(A)$, is defined by

\[
S(A) = A_{22} - A_{21}A_{11}^\alpha A_{12},
\]

(4)

where $A_{11}^\alpha \in A_{11}\{1\}$.

The case A_{11}^{-1} instead of A_{11}^α, under assumption that A_{11} is invertible, was first used by Schur [14]. The idea of Schur complements goes back to Sylvester (1851) and the term Schur complements was introduced by E. Haynsworth [10]. Carlson et al. [4] defined the generalized Schur complement by replacing the ordinary inverse with the Moore-Penrose inverse.

The Schur complement and the generalized Schur complement, were studied by a number of authors, including their applications in statistics, matrix theory, electrical network theory, discrete-time regulator problem, sophisticated techniques and some other fields. For interesting results concerning Schur complements see also [1], [5], [6], [7], [8], [12].

Banachiewicz [3] expressed the inverse of a partitioned matrix in terms of Schur complement. When the partitioned matrix A, given by (3), is nonsingular and A_{11} is also nonsingular, then $S(A)$ is nonsingular and

\[
A^{-1} = \begin{bmatrix}
A_{11}^{-1} + A_{11}^{-1}A_{12}S^{-1}A_{21}A_{11}^{-1} & -A_{11}^{-1}A_{12}S^{-1} \\
-S^{-1}A_{21}A_{11}^{-1} & S^{-1}
\end{bmatrix},
\]

(4)
where we use S instead of $S(A)$.

The motivations for our research are the following:

(1) the paper of Baksalary and Styan [2] in which they extended the result of Marsaglia and Styan [11], considering the necessary and sufficient conditions such that the outer inverses, least-squares generalized inverses and minimum norm generalized inverses can be represented by the Banachiewicz-Schur form;

(2) the paper of Y.Wei [15] in which he found the sufficient conditions for the Drazin inverse to be represented by the Banachiewicz-Schur form.

Our purpose is to generalized these results for the weighted Moore-Penrose inverse and the weighted Drazin inverse of A.

2 Results

Let $X \in C^{(n+q)\times(m+p)}$ be given by

$$X = \begin{bmatrix} A^\alpha_{11} + A_{11}^\alpha A_{12} S^\alpha A_{21}^\alpha A_{11}^\alpha & -A_{11}^\alpha A_{12} S^\alpha \\ -S^\alpha A_{21} A_{11}^\alpha & S^\alpha \end{bmatrix},$$

(5)

where $A_{11}^\alpha \in A_{11}\{1\}$ and the positive definite matrices $M \in C^{(m+p)\times(m+p)}$ and $N \in C^{(n+q)\times(n+q)}$ are given by

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}, \quad N = \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix},$$

(6)

where $M_{11} \in C^{m\times m}$, $M_{22} \in C^{p\times p}$, $N_{11} \in C^{n\times n}$, $N_{22} \in C^{q\times q}$.

We begin with the following result of Baksalary and Styan [2], adopting the following notations from [2]:

$$E_{A_{11}} = I - A_{11}^\alpha A_{11}, \quad F_{A_{11}} = I - A_{11} A_{11}^\alpha, \quad E_S = I - S^\alpha S, \quad F_S = I - SS^\alpha,$$

where $S = S(A)$ is the Schur complement of A which is defined in (4) and $S^\alpha \in C^{q\times p}$.

Theorem 2.1 Let A and X are given by (3) and (5). Then $X \in A\{1\}$ if and only if $S^\alpha \in S\{1\}$ and

$$F_{A_{11}} A_{12} E_S = 0, \quad F_S A_{21} E_{A_{11}} = 0, \quad F_{A_{11}} A_{12} S^\alpha A_{21} E_{A_{11}} = 0.$$

(7)

The last three conditions being independent of the choice of $A_{11}^\alpha \in A_{11}\{1\}$ and $S^\alpha \in S\{1\}$ involved in $E_{A_{11}}, F_{A_{11}}, E_S$ and F_S.

The following theorem give the necessary and sufficient conditions such that \(X \in A\{1, 3(M)\} \) under some conditions.

Theorem 2.2 If \(M \) is a positive definite matrix given by (6), such that

\[
(M_{12}S\alpha)^* = M_{12}^*A_{11}^0A_{11}^0 - M_{12}^*F_{A_{11}}A_{12}^0A_{21}^0A_{11}^0 + M_{12}^*F_A^*A_{12}^0A_{11}^0, \\
S\alpha M_{22}F_S = E_SM_{22}S\alpha,
\]

then \(X \in A\{1, 3(M)\} \) if and only if \(A_{11}^0 \in A_{11}\{1, 3(M_{11})\} \), \(S\alpha \in S\{1, 3(M_{22})\} \) and

\[
F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0.
\]

The last two conditions are independent of the choice of \(A_{11}^0 \in A_{11}\{1\} \) and \(S\alpha \in S\{1\} \) involved in \(F_{A_{11}} \) and \(F_S \).

Proof. Suppose that \(A_{11}^0 \in A_{11}\{1, 3(M_{11})\} \), \(S\alpha \in S\{1, 3(M_{22})\} \) and the conditions (9) are satisfied. Then the conditions from the Theorem 2.1 are satisfied and \(X \) is an inner inverse of \(A \). Also, we have that

\[
(MAX)_{11} = M_{11}A_{11}^0A_{11}^0 - M_{11}F_{A_{11}}A_{12}^0A_{21}^0A_{11}^0 + M_{12}^*F_SA_{21}^0A_{11}^0, \\
(MAX)_{12} = M_{11}F_{A_{11}}A_{12}^0A_{21}^0A_{11}^0 + M_{12}^*F_A^*A_{12}^0A_{11}^0 = M_{12}SS\alpha, \\
(MAX)_{21} = M_{12}^*A_{11}^0A_{11}^0 - M_{12}^*F_{A_{11}}A_{12}^0A_{21}^0A_{11}^0 + M_{22}F_SA_{21}^0A_{11}^0, \\
(MAX)_{22} = M_{12}^*F_{A_{11}}A_{12}^0A_{21}^0A_{11}^0 + M_{22}SS\alpha = M_{22}SS\alpha.
\]

Obviously, \((MAX)_{11} = (MAX)_{11}^*\), \((MAX)_{12} = (MAX)_{21}^*\) and \((MAX)_{22} = (MAX)_{22}^*\), i.e. \(MAX = (MAX)^* \).

On the other hand, let \(X \in A\{1, 3(M)\} \). Then the conditions (7) are satisfied and \(MAX = (MAX)^* \).

We have that \((MAX)_{21} = (MAX)_{21}^*\), so we obtain that \(M_{11}F_{A_{11}}A_{12}^0 = (M_{22}F_SA_{21}^0)^* \) and

\[
(M_{11}F_{A_{11}}A_{12}^0)(M_{11}F_{A_{11}}A_{12}^0)^* = M_{11}F_{A_{11}}A_{12}^0S\alpha M_{22}F_SA_{21}^0A_{11}^0 = M_{11}F_{A_{11}}A_{12}^0F_SA_{21}^0A_{11}^0 = 0.
\]

Hence, \(M_{11}F_{A_{11}}A_{12}^0 = 0 \), i.e. \(M_{11}F_{A_{11}}A_{12} = 0 \) and \(M_{22}F_SA_{21}^0A_{11}^0 = 0 \), i.e. \(M_{22}F_SA_{21} = 0 \).
Using the fact that M is invertible, we have that M_{11} and M_{22} are also invertible, so we obtain the conditions (9).

By the $(MAX)_{11} = (MAX)^*_{11}$ and $(MAX)_{22} = (MAX)^*_{22}$, it follows that $A_{11}^\alpha \in A_{11}\{1,3(M_{11})\}$ and $S^\alpha \in S\{1,3(M_{22})\}$

The independence of the conditions (9) of the choice of $A_{11}^\alpha \in A_{11}\{1\}$ in $F_{A_{11}}$ and $S^\alpha \in S\{1\}$ in F_S, follows by the same arguments as in the proof of Theorem 2.1.

Corollary 2.1 If M is a positive definite matrix given by (6), such that

\[S^\alpha M_{22}F_S = E_SM_{22}S^\alpha, \quad M_{12}^*FA_{11}A_{12} = 0, \quad M_{12}SS^\alpha = (M_{12}^*A_{11}A_{11}^\alpha)^*, \quad (10) \]

then $X \in A\{1,3(M)\}$ if and only if $A_{11}^\alpha \in A_{11}\{1,3(M_{11})\}$, $S^\alpha \in S\{1,3(M_{22})\}$ and

\[F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0. \quad (11) \]

The last two conditions are independent of the choice of $A_{11}^\alpha \in A_{11}\{1\}$ and $S^\alpha \in S\{1\}$ involved in $F_{A_{11}}$ and F_S.

Notice that for $M = I_{m+p}$, the conditions (8) are satisfied, so we obtain the Theorem 3 in [2] as a special case for $M = I_{m+p}$.

Corollary 2.2 [2] $X \in A\{1,3\}$ if and only if $A_{11}^\alpha \in A_{11}\{1,3\}$, $S^\alpha \in S\{1,3\}$ and

\[F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0. \quad (12) \]

We have the following result with less restrictive conditions for the matrix M only in one direction.

Corollary 2.3 If $A_{11}^\alpha \in A_{11}\{1,3(M_{11})\}$, $S^\alpha \in S\{1,3(M_{22})\}$ and

\[F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0, \quad M_{12}SS^\alpha = (M_{12}^*A_{11}A_{11}^\alpha)^*, \]

then $X \in A\{1,3(M)\}$.

The following theorem give the necessary and sufficient conditions for $X \in A\{1,4(N)\}$.
Theorem 2.3 If N is a positive definite matrix given by (6), such that

$$
(N_{12}S^\alpha S)^* = N_{12}^*A_{11}^\alpha A_{11} + N_{12}^*A_{11}^\alpha A_{12}S^\alpha A_{11},
$$

$$
S^\alpha M_{22}F_S = E_S M_{22}S^\alpha,
$$

then $X \in A\{1, \{4(N)\}\}$ if and only if $A_{11}^\alpha \in A_{11}\{1, \{4(N_{11})\}\}$, $S^\alpha \in S\{1, \{4(N_{22})\}\}$ and

$$
A_{12}E_S = 0, \ A_{21}E_{A_{11}} = 0.
$$

Proof. The proof is analogous to the proof of Theorem 2.2.

Corollary 2.4 If N is nonnegative matrix given by (6), such that

$$
S^\alpha N_{22}F_S = E_S N_{22}S^\alpha, \ N_{12}^*A_{11}^\alpha A_{12} = 0, \ N_{12}S^\alpha S = (N_{12}^*A_{11}^\alpha A_{11})^*,
$$

then $X \in A\{1, \{4(N)\}\}$ if and only if $A_{11}^\alpha \in A_{11}\{1, \{4(N_{11})\}\}$, $S^\alpha \in S\{1, \{4(N_{22})\}\}$ and

$$
A_{12}E_S = 0, \ A_{21}E_{A_{11}} = 0.
$$

Also, Theorem 4 in [2] is obtained as a special case for $N = I_{n+q}$.

Corollary 2.5 [2] $X \in A\{1, \{4\}\}$ if and only if $A_{11}^\alpha \in A_{11}\{1, \{4\}\}$, $S^\alpha \in S\{1, \{4\}\}$ and

$$
A_{12}E_S = 0, \ A_{21}E_{A_{11}} = 0.
$$

Analogously to the Corollary 2.3 we have the following

Corollary 2.6 If $A_{11}^\alpha \in A_{11}\{1, \{4(N_{11})\}\}$, $S^\alpha \in S\{1, \{4(N_{22})\}\}$ and

$$
A_{12}E_S = 0, \ A_{21}E_{A_{11}} = 0. \ N_{12}S^\alpha S = (N_{12}^*A_{11}^\alpha A_{11})^*,
$$

then $X \in A\{1, \{3\}(M)\}$.

It is easy to see that Theorem 2.2 and Theorem 2.3 are satisfied if we suppose that M_{11}, M_{22}, N_{11} and N_{22} are invertible, instead of the fact that M and N are invertible matrices.

Using the results from Theorem 2.2, Theorem 2.3 and Theorem 2 in [2] we obtain the necessary and sufficient conditions such that the weighted Moore-Penrose inverse of A, $A_{M,N}^\dagger$ has the Banachiewicz form, where M and N are matrices which satisfy the conditions (8) and (13).
Theorem 2.4 Let M and N be the matrices which satisfy the conditions (8) and (13). Then $X = A^\dagger_{M,N}$ if and only if $A_{11}^\alpha = (A_{11})^\dagger_{M_{11},N_{11}}$, $S^\alpha = S^\dagger_{M_{22},N_{22}}$ and

$$F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0, \quad A_{12}E_S = 0, \quad A_{21}E_{A_{11}} = 0. \quad (17)$$

If $M = I_{m+p}$ and $N = I_{n+q}$, then the conditions (8) and (13) are obviously satisfied, so from Theorem 2.4 we obtain the necessary and sufficient conditions for $X = A^\dagger$. Also, with less restrictive conditions for the matrices M and N we obtain the sufficient conditions for $X = A^\dagger_{M,N}$.

Corollary 2.7 If $A_{11}^\alpha = (A_{11})^\dagger_{M_{11},N_{11}}$, $S^\alpha = S^\dagger_{M_{22},N_{22}}$ and

$$F_{A_{11}}A_{12} = 0, \quad F_SA_{21} = 0, \quad A_{12}E_S = 0, \quad A_{21}E_{A_{11}} = 0,$$

$$M_{12}SS^\alpha = (M_{12}A_{11}A_{11}^\alpha)^*, \quad N_{12}S^\alpha S = (N_{12}A_{11}^\alpha A_{11})^*,$$

then $X = A^\dagger_{M,N}$.

It is interesting to notice that if we denote by

$$G = \begin{pmatrix} I & O \\ A_{21}A_{11}^\alpha & I \end{pmatrix} \begin{pmatrix} A_{11} & O \\ O & S \end{pmatrix} \begin{pmatrix} I & A_{11}^\alpha A_{12} \\ O & I \end{pmatrix},$$

where $A_{11}^\alpha \in A_{11}\{1\}$, then

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} O & F_{A_{11}}A_{12} \\ A_{21}E_{A_{11}} & O \end{pmatrix} + G,$$

and if the expression (5) of X is rewritten as following matrices product

$$X = \begin{pmatrix} I & -A_{11}^\alpha A_{12} \\ O & I \end{pmatrix} \begin{pmatrix} A_{11}^\alpha & O \\ O & S^\alpha \end{pmatrix} \begin{pmatrix} I & 0 \\ -A_{21}A_{11}^\alpha & I \end{pmatrix},$$

then it is easy to see that $X \in G\{1\}$. Moreover, if the conditions $F_{A_{11}}A_{12} = 0$ and $A_{21}E_{A_{11}} = 0$ hold, we can obtain that $A = G$ and therefore $X \in A\{1,2\}$ if and only if $A_{11}^\alpha \in A\{1,2\}$ and $S^\alpha \in S\{1,2\}$.

In the rest of the paper we consider the sufficient conditions such that the W-weighted Drazin inverse can be represented in the Banachewiecz-Schur form.
Recall that for an arbitrary matrix \(W \in C^{(n+q)\times(m+p)} \) there exist non-singular matrices \(P \in C^{(n+q)\times(n+q)} \) and \(Q \in C^{(m+p)\times(m+p)} \) such that
\[
W = PW'Q^{-1} = P \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix} Q^{-1},
\]
where \(W_1 \in C^{n\times m}, W_2 \in C^{q\times p} \).

Hence, if \(A = QA'P^{-1} \) and \(X = QX'P^{-1} \), then \(X \) is the \(W \)-weighted Drazin inverse of \(A \) if and only if \(X' \) is the \(W' \)-weighted Drazin inverse of \(A' \). With this reason we will naturally assume that \(W \in C^{(n+q)\times(m+p)} \) has the following form
\[
W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \quad W_1 \in C^{n\times m}, W_2 \in C^{q\times p}
\]
in the next result concerning \(W \)-weighted Drazin inverse. Furthermore, we will consider matrix \(A \in C^{(m+p)\times(n+q)} \) given by (3), modified Schur complement given by
\[
S = S(A) = A_{12} - A_{21}W_1A_{11}^\alpha W_1A_{12},
\]
and modified Banachiewicz-Schur form \(X \in C^{(n+q)\times(m+p)} \) given by
\[
X = \begin{bmatrix} A_{11}^\alpha + A_{11}^\alpha W_1A_{12}W_2S^\alpha W_2A_{21}W_1A_{11}^\alpha & -A_{11}^\alpha W_1A_{12}W_2S^\alpha \\ -S^\alpha W_2A_{21}W_1A_{11}^\alpha & S^\alpha \end{bmatrix},
\]
where \(A_{11}^\alpha = A_{11}^{dW_1}, S^\alpha = S^{dW_2} \).

Theorem 2.5 Let \(A, X, W, S \) be given by (3), (20), (18), (19) respectively. If
\[
\begin{align*}
A_{12}W_2 &= A_{11}W_1A_{11}^\alpha W_1A_{12}W_2 = A_{12}W_2SW_2S^\alpha W_2, \\
A_{21}W_1 &= A_{21}W_1A_{11}W_1A_{11}^\alpha W_1 = SW_2S^\alpha W_2A_{21}W_1, \\
W_1A_{12} &= W_1A_{12}W_2S^\alpha W_2, \\
W_2A_{21} &= W_2A_{21}W_1A_{11}^\alpha W_1A_{11}, \\
A_{22}W_2 &= A_{22}W_2SW_2S^\alpha W_2,
\end{align*}
\]
then \(X = A^{dW} \).
Proof. By a straightforward computation, we obtain that

\[(AWX)_{11} = A_{11}W_1A_{11}^\alpha - (A_{12}W_2 - A_{11}W_1A_{11}^\alpha W_1A_{12}W_2)S^\alpha W_2A_{21}W_1A_{11}^\alpha \]
\[= A_{11}W_1A_{11}^\alpha, \text{ using the first part of (21),} \]
\[(AWX)_{12} = (A_{12}W_2 - A_{11}W_1A_{11}^\alpha W_1A_{12}W_2)S^\alpha \]
\[= 0, \text{ by the first the part of (21),} \]
\[(AWX)_{21} = A_{21}W_1A_{11}^\alpha - (A_{22} - A_{21}W_1A_{11}^\alpha W_1A_{12})W_2S^\alpha W_2A_{21}W_1A_{11}^\alpha \]
\[= A_{21}W_1A_{11}^\alpha - SW_2S^\alpha W_2A_{21}W_1A_{11}^\alpha \]
\[= 0, \text{ by the second part of (22),} \]
\[(AWX)_{22} = (A_{22} - A_{21}W_1A_{11}^\alpha W_1A_{12})W_2S^\alpha = SW_2S^\alpha. \]

Similarly,

\[(XWA)_{11} = A_{11}^\alpha W_1A_{11} - A_{11}^\alpha W_1A_{11}W_2S^\alpha (W_2A_{21} - W_2A_{21}W_1A_{11}^\alpha W_1A_{11}) \]
\[= A_{11}^\alpha W_1A_{11}, \text{ using (24),} \]
\[(XWA)_{12} = A_{11}^\alpha W_1A_{12} - A_{11}^\alpha W_1A_{12}W_2S^\alpha W_2 (A_{22} - A_{21}W_1A_{11}^\alpha W_1A_{12}) \]
\[= A_{11}^\alpha W_1A_{12} - A_{11}^\alpha W_1A_{12}W_2S^\alpha W_2S \]
\[= 0, \text{ using (23),} \]
\[(XWA)_{21} = S^\alpha (W_2A_{21} - W_2A_{21}W_1A_{11}^\alpha W_1A_{11}) \]
\[= 0, \text{ by (24),} \]
\[(XWA)_{22} = S^\alpha W_2(A_{22} - A_{21}W_1A_{11}^\alpha W_1A_{12}) \]
\[= SW_2S^\alpha. \]

Now,

\[AWX = \begin{bmatrix} A_{11}W_1A_{11}^\alpha & 0 \\ 0 & SW_2S^\alpha \end{bmatrix} \]

and

\[XWA = \begin{bmatrix} A_{11}^\alpha W_1A_{11} & 0 \\ 0 & S^\alpha W_2S \end{bmatrix}, \]

so \(AWX = XWA.\)

Using the facts that \(A_{11}^\alpha = A_{11}^{d,W_1}\) and \(S^\alpha = S^{d,W_2}\), we obtain that \(XWA = X\). Also, using (25),(22) and (21) it follows that,

\[(AW)^2XW = \begin{bmatrix} (A_{11}W_1)^2A_{11}^\alpha W_1 & A_{12}W_2SW_2S^\alpha W_2 \\ A_{21}W_1A_{11}W_1A_{11}^\alpha W_1 & A_{22}W_2SW_2S^\alpha W_2 \end{bmatrix} \]
\[= AW + \begin{bmatrix} (A_{11}W_1)^2A_{11}^\alpha W_1 - A_{11}W_1 & 0 \\ 0 & 0 \end{bmatrix}. \]
By the induction, using the first part of (22), we obtain that

$$(AW)^{m+1}XW = (AW)^m + \left[\begin{array}{cc} (A_{11}W_1)^m - (A_{11}W_1)^{m+1}A_{11}^0W_1 & 0 \\ 0 & 0 \end{array} \right].$$

Hence $(AW)^{m+1}XW = (AW)^m$, for an arbitrary $m \geq \text{ind}(A_{11}W_1)$.

From Theorem 2.5, we obtain the result of Wei [Theorem 1, [15]] when $m = n$, $p = q$ and $W = I_{m+p}$:

Corollary 2.8 Let A and X are given by (3) and (5). If $F_{A_{11}A_{12}} = 0$, $A_{21}E_{A_{11}} = 0$, $A_{12}E_S = 0$, $E_SA_{21} = 0$, $A_{22}E_S = 0$, then $X = A^d$.

3 Conclusions

In this paper we developed some necessary and sufficient conditions for which the weighted generalized inverses $A^{(1,3M)}$, $A^{(1,4N)}$, and $A^{M,N}_{M,N}$ of a partitioned matrix can be respectively expressed in Banachiewicz-Schur form under certain assumptions. Similar problem for the W-weighted Drazin inverse is also considered and some sufficient conditions are established. This can be viewed as a generalization of the earlier works obtained bt S.K.Baksalary and Styan [2] and Y.Wei [15].

Acknowledgements

This work of the first author was supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia. The work of the second author is supported by The start-up fund and 985 Specific Program of Lanzhou University.

References

