New results on reverse order law for $\{1, 2, 3\}$ and $\{1, 2, 4\}$-inverses of bounded operators

Xiaoji Liu 1, Shuxia Wu 1, Dragana S. Cvetković-Ilić 2 * †

1 College of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, P.R.China
2 University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

Abstract

In this paper, using some block-operator matrix techniques, we give the necessary and sufficient conditions for the reverse order law for $\{1, 2, 3\}$ and $\{1, 2, 4\}$-inverses of bounded operators on Hilbert spaces. Furthermore, we present new equivalent conditions for the reverse order law for the Moore-Penrose inverse.

AMS classification: 15A09

Key words: block-operator matrix, Moore-Penrose inverse, reverse order law, $\{1, 2, 3\}$–inverse, $\{1, 2, 4\}$–inverse

1 Introduction

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators from \mathcal{H} to \mathcal{K}. For a given $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, the symbols $N(A)$ and $\mathcal{R}(A)$ denote the null space and the range of A, respectively. For a given sets M, N, by MN we denote the set consisting of all products XY, where $X \in M$ and $Y \in N$.

Recall that $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ has a Moore-Penrose inverse if there exists an operator $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ such that

\begin{align}
(1) \quad AXA &= A \\
(2) \quad XAX &= X \\
(3) \quad (AX)^* &= AX \\
(4) \quad (XA)^* &= XA.
\end{align} \tag{1.1}

Moore-Penrose inverse of an operator $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ exists if and only if A has a closed range and in this case it is unique. It is denoted by A^\dagger.

For any $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$, let $A\{i, j, \ldots, k\}$ denote the set of operators $X \in \mathcal{B}(\mathcal{K}, \mathcal{H})$ which satisfies equations (i), (j), ..., (k) from among equations (1)–(4) of (1.1). In this case X is $\{i, j, \ldots, k\}$–inverse of A which is denoted by $A^{(i,j,\ldots,k)}$. Evidently, $A\{1, 2, 3, 4\} = \{A^\dagger\}$, when A has a closed range.

*Corresponding author.
E-mail: dragana@pmf.ni.ac.rs (D.S. Cvetković-Ilić), xiaojiliu72@yahoo.com.cn (X. Liu, Tel. +86-0771-3264782), anita623482950@yahoo.com.cn (S. Wu)

†Supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.
The reverse order laws for two matrices or operators have been investigated intensively (see [5], [6], [9], [10], [12]-[14]). T.N.E. Greville [8] proved that $(AB)^\dagger = B^\dagger A^\dagger$ if and only if $\mathcal{R}(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$, for matrices A and B. This result was extended to linear bounded operators on Hilbert spaces in [10]. Later, the reverse order law for the Moore-Penrose inverse was considered in rings with involution (see [11]).

Xiong and Zheng [17] considered the reverse order law for $\{1, 2, 3\}$ and $\{1, 2, 4\}$—generalized inverses of the products of two matrices and their techniques involved expressions for maximal and minimal ranks of the generalized Schur complement. In [2] authors considered the reverse order law for K-inverses in the cases $K \in \{\{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\}$ for the elements of C*-algebra.

In this paper, using block-operator matrix techniques, we consider the reverse order law for $\{1, 2, 3\}$ and $\{1, 2, 4\}$—inverses of bounded operators on Hilbert spaces. We give the necessary and sufficient conditions for

$$B\{1, 2, 3\} \cdot A\{1, 2, 3\} \subseteq (AB)\{1, 2, 3\}$$

and

$$B\{1, 2, 4\} \cdot A\{1, 2, 4\} \subseteq (AB)\{1, 2, 4\}.$$ We generalized the results from [2] for the case of bounded operators on Hilbert space. Furthermore, we present new equivalent conditions for the reverse order law for the Moore-Penrose inverse.

2 Preliminaries

Let \mathcal{H}, \mathcal{K} be Hilbert spaces and $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ has a closed range. The operator A has the following matrix decomposition (see [4], [7])

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix}, \tag{2.1}$$

where A_1 is invertible. Also A^\dagger has the form

$$A^\dagger = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix}. \tag{2.2}$$

If $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ has a closed range, then we can explicitly describe the sets $A\{1, 2, 3\}$ and $A\{1, 2, 4\}$ using the representation of A given by (2.1).

Lemma 2.1. Let \mathcal{H}, \mathcal{K} be Hilbert spaces and $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ has a closed range. Then

$$A\{1, 2, 3\} = \left\{ \begin{bmatrix} A_1^{-1} & 0 \\ X_3 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} : X_3 \in \mathcal{B}(\mathcal{R}(A), \mathcal{N}(A)) \right\}$$

and

$$A\{1, 2, 4\} = \left\{ \begin{bmatrix} A_1^{-1} & X_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} : X_2 \in \mathcal{B}(\mathcal{N}(A^*), \mathcal{R}(A^*)) \right\}.$$
Proposition. Suppose that A and A^\dagger are given by (2.1) and (2.2), respectively. Since
\[
A\{1, 2, 3\} = \{A^\dagger + (I - A^\dagger A)XAA^\dagger : X \in \mathcal{B}(\mathcal{K}, \mathcal{H})\},
\]
we have that $A^{(1,2,3)} \in A\{1, 2, 3\}$ if and only if
\[
A^{(1,2,3)} = A^\dagger + (I - A^\dagger A)XAA^\dagger
= \begin{bmatrix}
A_1^{-1} & 0 \\
0 & 0 \\
X_3 & X_4
\end{bmatrix}
\begin{bmatrix}
X_1 & X_2 \\
X_3 & X_4
\end{bmatrix}
\begin{bmatrix}
I & 0 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
A_1^{-1} & 0 \\
X_3 & 0
\end{bmatrix},
\]
for some $X = \begin{bmatrix}
X_1 & X_2 \\
X_3 & X_4
\end{bmatrix} : \begin{bmatrix}
\mathcal{R}(A) \\
\mathcal{N}(A)
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{R}(A^*) \\
\mathcal{N}(A)
\end{bmatrix}$. The proof for the case of $\{1, 2, 4\}$-inverses follows analogous.

\[\square\]

Lemma 2.2. Let \mathcal{K}, \mathcal{L} and \mathcal{H} be Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{B}(\mathcal{L}, \mathcal{H})$ be such that $\mathcal{R}(A)$, $\mathcal{R}(B)$ and $\mathcal{R}(AB)$ are closed. Then $\mathcal{R}(B^*) \cap \mathcal{N}(AB) = \{0\}$ if and only if $\mathcal{R}(B) \cap \mathcal{N}(A) = \{0\}$.

Proof. First, let us remark that $B|_{\mathcal{R}(B^*)} : \mathcal{R}(B^*) \rightarrow \mathcal{R}(B)$ is invertible operator.

\[\begin{aligned}
(\Rightarrow) : \text{Suppose that } & \mathcal{R}(B^*) \cap \mathcal{N}(AB) = \{0\} \text{ and let } x \in \mathcal{R}(B) \cap \mathcal{N}(A). \text{ By (2.3), there exists } y \in \mathcal{R}(B^*) \text{ such that } By = x. \text{ Now, } y \in \mathcal{R}(B^*) \cap \mathcal{N}(AB) \text{ i.e. } y = 0, \text{ so } x = By = 0.

(\Leftarrow) : \text{If we suppose that } & \mathcal{R}(B) \cap \mathcal{N}(A) = \{0\} \text{ and take } u \in \mathcal{R}(B^*) \cap \mathcal{N}(AB), \text{ we get that } Bu \in \mathcal{R}(B) \cap \mathcal{N}(A) \text{ i.e. } Bu = 0. \text{ Using (2.3) it follows that } u = 0. \square
\end{aligned}\]

Let us introduce the following notations: If a Hilbert space \mathcal{H} is decomposed as $\mathcal{H} = U_1 \oplus \cdots \oplus U_k$ where $U_i \perp U_j$ for $i \neq j$, then we shall denote that $\mathcal{H} = U_1 \oplus^\perp \cdots \oplus^\perp U_k$. If \mathcal{U} is a complement space of a Hilbert space \mathcal{H} we shall denote by $\mathcal{H} \ominus^\perp \mathcal{U}$ the unique subspace \mathcal{V} of \mathcal{H} such that $\mathcal{H} = \mathcal{U} \oplus^\perp \mathcal{V}$.

Remark 2.1. Let \mathcal{K}, \mathcal{L} and \mathcal{H} be Hilbert spaces and let $A \in \mathcal{B}(\mathcal{K}, \mathcal{K})$, $B \in \mathcal{B}(\mathcal{L}, \mathcal{H})$ be such that $\mathcal{R}(A)$, $\mathcal{R}(B)$ and $\mathcal{R}(AB)$ are closed. Denote by
\[
\begin{align*}
\mathcal{H}_1 &= \mathcal{R}(B) \cap \mathcal{N}(A), \\
\mathcal{H}_2 &= \mathcal{R}(B) \ominus^\perp \mathcal{H}_1, \\
\mathcal{H}_3 &= \mathcal{N}(B^*) \cap \mathcal{N}(A), \\
\mathcal{H}_4 &= \mathcal{N}(B^*) \ominus^\perp \mathcal{H}_3,
\end{align*}
\]
Hilbert spaces \mathcal{K}, \mathcal{L} and \mathcal{H} can be decomposed as
\[
\mathcal{K} = \mathcal{R}(B) \ominus^\perp \mathcal{N}(B^*), \quad \mathcal{K} = \mathcal{R}(A) \ominus^\perp \mathcal{N}(A^*), \quad \mathcal{L} = \mathcal{R}(B^*) \ominus^\perp \mathcal{N}(B),
\]
where
\[
\mathcal{R}(B) = \mathcal{H}_1 \ominus \mathcal{H}_2, \quad \mathcal{N}(B^*) = \mathcal{H}_3 \ominus^\perp \mathcal{H}_4, \quad \mathcal{R}(A) = \mathcal{K}_1 \ominus \mathcal{K}_2, \quad \mathcal{R}(B^*) = \mathcal{L}_1 \ominus^\perp \mathcal{L}_2.
\]

3
We can prove that \(B^\dagger (\mathcal{R}(B) \cap N(A)) = \mathcal{R}(B^*) \cap N(AB) \). Let \(x \in \mathcal{R}(B^*) \cap N(AB) \). Then \(x \in \mathcal{R}(B^\dagger) = \mathcal{R}(B^\dagger B) = B^\dagger \mathcal{R}(B) \) and \(ABx = 0 \), i.e., \(Bx \in N(A) \). So we have \(x = B^\dagger Bx \in B^\dagger N(A) \). Finally, \(x \in B^\dagger (\mathcal{R}(B) \cap N(A)) \). On the other hand, let \(y \in B^\dagger (\mathcal{R}(B) \cap N(A) \), i.e., \(y \in \mathcal{R}(B^\dagger B) = \mathcal{R}(B^*) \) and there exists \(z \in \mathcal{R}(B) \cap N(A) \) such that \(y = B^\dagger z \), then \(ABy = ABB^\dagger z = Az = 0 \), i.e., \(y \in N(AB) \). Thus, by Lemma 2.2, we get

\[
\mathcal{H}_2 = \mathcal{R}(B) \leftrightarrow \mathcal{H}_1 = \{0\} \leftrightarrow N(AB) = N(B) \leftrightarrow \mathcal{L}_1 = \{0\} \leftrightarrow \mathcal{L}_2 = \mathcal{R}(B^*).
\]

Furthermore,

\[
\mathcal{H}_2 = \{0\} \leftrightarrow \mathcal{H}_1 = \mathcal{R}(B) \leftrightarrow \mathcal{R}(B) \subset N(A) \leftrightarrow \mathcal{L}_1 = \mathcal{R}(B^*) \leftrightarrow \mathcal{L}_2 = \{0\} \leftrightarrow \mathcal{K}_1 = \{0\} \leftrightarrow \mathcal{K}_2 = \mathcal{R}(A).
\]

Throughout the paper we will use the notations from the above remark.

A similar result to the following one but for the case of two Hilbert spaces has been presented in [14]. Now we give a different proof in the case of three Hilbert spaces.

Lemma 2.3. Let \(\mathcal{H}, \mathcal{K} \) and \(\mathcal{L} \) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B \in \mathcal{B}(\mathcal{L}, \mathcal{H}) \) be such that \(\mathcal{R}(A), \mathcal{R}(B) \) and \(\mathcal{R}(AB) \) are closed.

(1) If \(AB \neq 0 \) and \(N(AB) \neq N(B) \), then \(A \) and \(B \) have the following operator matrix forms

\[
A = \begin{bmatrix}
0 & A_{12} & 0 & A_{14} \\
0 & 0 & 0 & A_{24} \\
0 & 0 & 0 & 0
\end{bmatrix} : \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
N(A^*)
\end{bmatrix}, \tag{2.4}
\]

and

\[
B = \begin{bmatrix}
B_{11} & B_{12} & 0 \\
0 & B_{22} & 0 \\
0 & 0 & 0
\end{bmatrix} : \begin{bmatrix}
\mathcal{L}_1 \\
\mathcal{L}_2 \\
N(B)
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix}, \tag{2.5}
\]

where \(A_{12}, B_{11}, B_{22} \) are invertible operators and \(A_{24} \) is a surjection.

(2) If \(AB \neq 0 \) and \(N(AB) = N(B) \), then \(A \) and \(B \) have the following operator matrix forms

\[
A = \begin{bmatrix}
A_{12} & 0 & A_{14} \\
0 & 0 & A_{21} \\
0 & 0 & 0
\end{bmatrix} : \begin{bmatrix}
\mathcal{R}(B) \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
N(A^*)
\end{bmatrix}, \tag{2.6}
\]

and

\[
B = \begin{bmatrix}
B_{22} & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix} : \begin{bmatrix}
\mathcal{R}(B^*) \\
N(B)
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{R}(B) \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix}, \tag{2.7}
\]

where \(A_{12}, B_{22} \) are invertible operators and \(A_{24} \) is a surjection.
(3) If $AB = 0$ and $N(AB) \neq N(B)$, then A and B have the following operator matrix forms

$$A = \begin{bmatrix} 0 & 0 & A_{24} \\ 0 & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{H}(B) \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ N(A^*) \end{bmatrix}$$

and

$$B = \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{21} & B_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{L}_2 \\ N(B) \end{bmatrix} \to \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix},$$

where B_{11} is invertible operator and A_{24} is invertible.

Proof. We will assume that the spaces \mathcal{H}, \mathcal{K} and \mathcal{L} are decomposed as in the Remark 2.1, so the conclusions from that remark also hold.

(1) Suppose that $AB \neq 0$ and $N(AB) \neq N(B)$. We have that B can be represented by

$$B = \begin{bmatrix} B_{11} & B_{12} & 0 \\ B_{21} & B_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{L}_2 \\ N(B) \end{bmatrix} \to \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix},$$

where $\widehat{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{L}_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \end{bmatrix}$ is invertible.

Since $B\mathcal{L}_1 \subset \mathcal{H}_1$, we get that $B_{21} = 0$. Now from the invertibility of \widehat{B}, we get that $B_{11} : \mathcal{L}_1 \to \mathcal{H}_1$ and $B_{22} : \mathcal{L}_2 \to \mathcal{H}_2$ are invertible.

Now, we will prove that A has a matrix form given by (2.4). Suppose that

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \end{bmatrix} : \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix} \to \begin{bmatrix} \mathcal{K}_1 \\ \mathcal{K}_2 \\ \mathcal{K}_3 \\ N(A^*) \end{bmatrix}.$$

The reductions A_{i3} for $i = 1, 2, 3$ are null operators because $\mathcal{H}_1, \mathcal{H}_3 \subset N(A)$. The range of the reductions A_{2j}, $(j = 1, 2, 3, 4)$ is $N(A^*)$, so $A_{3j} = 0$.

Now we will prove that $A_{22} = 0$: for any $x \in \mathcal{H}_2 \subset \mathcal{R}(B)$, there exists $y \in \mathcal{K}$ such that $By = x$. Now, $Ax = ABy \in \mathcal{K}_1$ and $Ax = A_{12}x + A_{22}x$. Since $A_{12}x \in \mathcal{K}_1$, we get that $A_{22}x = 0$.

In order to prove that A_{12} is bijective, first we will prove that $N(A_{12}) = \{0\}$: let $u \in \mathcal{H}_2$ be such that $A_{12}u = 0$. Then $u \in N(A)$ which implies that $u \in \mathcal{K}_1 \cap \mathcal{H}_2 = \{0\}$.

To prove that $A_{12} : \mathcal{H}_2 \to \mathcal{K}_1$ is surjective take any $k \in \mathcal{K}_1 = \mathcal{R}(AB)$. There exists $k' \in \mathcal{K}$ such that $ABk' = k$. Since $Bk' \in \mathcal{R}(B) = \mathcal{H}_1 \oplus \mathcal{H}_2$, there exist $h_1 \in \mathcal{H}_1$ and $h_2 \in \mathcal{H}_2$ such that $Bk' = h_1 + h_2$. Now, $Ah_2 = A(Bk' - h_1) = k$ i.e. $A_{12}h_2 = k$.

The surjective properties of $A_{24} : \mathcal{H}_4 \to \mathcal{K}_2$ follows from the fact that for any $u \in \mathcal{K}_2$, there exists $v \in \mathcal{H}$ such that $Av = u$. Let us decompose $v = \sum_{i=1}^{4} v_i$, where $v_i \in \mathcal{H}_i$. It is evident that $A_{24}v_4 = u$.

The proof of (2) and (3) is analogous.
3 Main results

Z. Xiong and B. Zheng [17] presented necessary and sufficient conditions for
\[B\{1, 2, 3\}A\{1, 2, 3\} \subseteq (AB)\{1, 2, 3\}, \tag{3.1} \]
in the case when \(A \) and \(B \) are matrices. Here, we give another characterization of (3.1) for linear bounded operators on Hilbert spaces using techniques which are completely different from those used in [17]. First, we will give the following remark:

Remark 3.1. Let \(\mathcal{H} \), \(\mathcal{K} \) and \(\mathcal{L} \) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \), \(B \in \mathcal{B}(\mathcal{L}, \mathcal{H}) \) be such that \(\mathcal{R}(A) \), \(\mathcal{R}(B) \) and \(\mathcal{R}(AB) \) are closed, \(AB \neq 0 \) and \(N(AB) \neq N(B) \). Then we can suppose that the operators \(A \) and \(B \) are represented by (2.4) and (2.5), respectively. By Lemma 2.1, \(X \in B\{1, 2, 3\} \) if and only if there exist operators \(F_{11} \) and \(F_{12} \) such that

\[
X = \begin{bmatrix}
B_{11}^{-1} - B_{12}^{-1}B_{12}B_{22}^{-1} & 0 & 0 \\
0 & B_{22}^{-1} & 0 \\
F_{11} & F_{12} & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4
\end{bmatrix} \to \begin{bmatrix}
\mathcal{L}_1 \\
\mathcal{L}_2 \\
\mathcal{N}(B)
\end{bmatrix}. \tag{3.2} \]

To describe the set \(A\{1, 2, 3\} \), suppose that an arbitrary \(Y \in A\{1, 2, 3\} \) is given by

\[
Y = \begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33} \\
Y_{41} & Y_{42} & Y_{43}
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4
\end{bmatrix} \to \begin{bmatrix}
\mathcal{N}(A^*)
\end{bmatrix}. \tag{3.3} \]

Since \(AY \) is hermitian, we get that

\[
AY = \begin{bmatrix}
A_{12}Y_{21} + A_{14}Y_{41} & A_{12}Y_{22} + A_{14}A_{42} \\
A_{24}Y_{41} & A_{24}Y_{42}
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4
\end{bmatrix} \to \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A^*)
\end{bmatrix}
\]

where \(A_{12}Y_{22} + A_{14}A_{42} = (A_{24}Y_{41})^* \) and \(A_{12}Y_{21} + A_{14}Y_{41} \), \(A_{24}Y_{42} \) are hermitian. Since \(AY \) is orthogonal projection on \(\mathcal{R}(A) \), from the definition of the subspaces \(\mathcal{K}_1 \) and \(\mathcal{K}_2 \) we can conclude that \(A_{12}Y_{21} + A_{14}Y_{41} = I, A_{24}Y_{42} = I, A_{12}Y_{22} + A_{14}A_{42} = 0 \) and \(A_{24}Y_{42} = 0 \). Now, from \(YAY = 0 \), we get that \(Y_{i3} = 0 \), for \(i = 1, 4 \). Hence, \(Y \in A\{1, 2, 3\} \) if and only if

\[
Y = \begin{bmatrix}
Y_{11} & Y_{12} & 0 \\
Y_{21} & Y_{22} & 0 \\
Y_{31} & Y_{32} & 0 \\
Y_{41} & Y_{42} & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4
\end{bmatrix} \to \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A^*)
\end{bmatrix}, \tag{3.4} \]

where \(Y_{ij} \) satisfy the following equalities

\[
\begin{aligned}
Y_{i2}A_{24}Y_{42} &= Y_{i2}, \quad i = 1, 4, \\
A_{12}Y_{21} + A_{14}Y_{41} &= I_{\mathcal{K}_1}, \\
A_{12}Y_{22} + A_{14}A_{42} &= 0, \\
A_{24}Y_{42} &= I_{\mathcal{K}_2}, A_{24}Y_{41} = 0.
\end{aligned} \tag{3.5} \]
Let B, R. We use the decompositions of the spaces Y first equation of (3.5), we get that Y and N respectively. Then Y are uniquely determined. Since A, B, Y and N are closed and M, A, B, Y and N must be of the form A_{i1}, A_{12}, 21, 22, 12, $21
(ii) ⇒ (i): Suppose $\mathcal{R}(A^*AB) = \mathcal{R}(B) \oplus \text{Im} [\mathcal{R}(B) \cap \mathcal{N}(A)]$ and $\mathcal{R}(AB) = \mathcal{R}(A)$. We must show that for arbitrary $X \in B\{1,2,3\}$ and $Y \in A\{1,2,3\}$ there exists $Z \in (AB)\{1,2,3\}$ such that $XY = Z$.

From $\mathcal{R}(AB) = \mathcal{R}(A)$, we get that $\mathcal{K}_2 = \{0\}$, i.e. $A_{24} = 0$. Also by $\mathcal{R}(A^*AB) = \mathcal{R}(B) \oplus \text{Im} [\mathcal{R}(B) \cap \mathcal{N}(A)]$ and the fact that

$$A^*AB = \begin{bmatrix} 0 & 0 & 0 \\ 0 & A_{12}^*A_{12}B_{22} & 0 \\ 0 & 0 & 0 \\ 0 & A_{14}^*A_{12}B_{22} & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{L}_2 \\ \mathcal{N}(B) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix}$$

where A_{12} and B_{22} are invertible we have $A_{14} = 0$.

Now, we get that $Y \in A\{1,2,3\}$ if and only if

$$Y = \begin{bmatrix} Y_{11} & 0 & 0 \\ A_{12}^{-1} & 0 & 0 \\ Y_{31} & 0 & 0 \\ Y_{41} & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{K}_1 \\ \mathcal{K}_2 \\ \mathcal{N}(A^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix}, \quad (3.9)$$

where Y_{11}, Y_{31}, Y_{41} are arbitrary. It is evident that for arbitrary $X \in B\{1,2,3\}$ and $Y \in A\{1,2,3\}$ there exists $Z \in (AB)\{1,2,3\}$ such that $XY = Z$, i.e. $B\{1,2,3\}A\{1,2,3\} \subseteq (AB)\{1,2,3\}$.

(2) When $\mathcal{N}(AB) = \mathcal{N}(B)$, the operators A and B are represented by (2.6) and (2.7), respectively and the proof is analogous to the case (1).

\[\square \]

Remark 3.2. 1° If $AB = 0$, then $(AB)\{1,2,3\} = \{0\}$. In the case when $A = 0$ or $B = 0$, evidently $B\{1,2,3\}A\{1,2,3\} \subseteq (AB)\{1,2,3\}$. If it is not the case, we have that $AB = 0 \leftrightarrow \mathcal{K}_2 = \{0\} \leftrightarrow \mathcal{H}_1 = \mathcal{R}(B) \leftrightarrow \mathcal{L}_2 = \{0\} \leftrightarrow \mathcal{L}_4 = \mathcal{R}(B^*) \leftrightarrow \mathcal{K}_1 = \{0\} \leftrightarrow \mathcal{X}_2 = \mathcal{R}(A)$. Also, A and B are represented by (2.8) and (2.9), respectively, so arbitrary $X \in B\{1,2,3\}$ and $Y \in A\{1,2,3\}$ are represented by

$$X = \begin{bmatrix} B_{11}^{-1} & 0 & 0 \\ F_1 & 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{N}(B) \end{bmatrix},$$

and

$$Y = \begin{bmatrix} F_2 & 0 \\ F_3 & 0 \\ A_{24}^{-1} & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{K}_2 \\ \mathcal{N}(A^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix},$$

for some operators F_1, F_2 and F_3.

By a simple computation, we observe that

$$XY = \begin{bmatrix} B_{11}^{-1}F_2 & 0 \\ F_1F_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{L}_1 \\ \mathcal{N}(B) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{K}_2 \\ \mathcal{N}(A^*) \end{bmatrix} \neq 0,$$

i.e., $B\{1,2,3\}A\{1,2,3\} \neq \{0\}$.

Hence, $AB = 0, A \neq 0, B \neq 0 \Rightarrow B\{1,2,3\}A\{1,2,3\} \not\subseteq (AB)\{1,2,3\}$.
2° From Theorem 3.1 we conclude that the condition
\[(ABB^\dagger)AABB^\dagger = BB^\dagger \quad \text{or} \quad (AB)(AB)^\dagger = AA^\dagger\]
from Theorem 3.3 [2] can be replaced by the sole condition \((AB)(AB)^\dagger = AA^\dagger\) i.e. \(\mathcal{R}(AB) = \mathcal{R}(A)\).

A similar result in the case \(K = \{1, 2, 4\}\) follows from Theorem 3.1 by the reversal of the products:

Theorem 3.2. Let \(\mathcal{H}, \mathcal{K}\) and \(\mathcal{L}\) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B \in \mathcal{B}(\mathcal{L}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed and \(AB \neq 0\). Then the following statements are equivalent:

(i) \(B\{1, 2, 4\}A\{1, 2, 4\} \subseteq (AB)\{1, 2, 4\}\).

(ii) \(\mathcal{R}(A^*) = \mathcal{R}(BB^*A^*) \oplus \mathcal{N}(B^*)\), \(\mathcal{N}(AB) = \mathcal{N}(B)\)

Remark 3.3. Let \(\mathcal{H}, \mathcal{K}\) and \(\mathcal{L}\) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}), B \in \mathcal{B}(\mathcal{L}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B), \mathcal{R}(AB)\) are closed, \(AB \neq 0\) and \(\mathcal{N}(AB) \neq \mathcal{N}(B)\). We have that operator \(B\) is represented by (2.5), so

\[
B^\dagger = \begin{bmatrix}
B_{11}^{-1} & -B_{11}^{-1}B_{12}B_{22}^{-1} & 0 & 0 \\
0 & B_{22}^{-1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} :
\begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4 \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\mathcal{L}_1 \\
\mathcal{L}_2 \\
\mathcal{N}(B) \\
\end{bmatrix}.
\] (3.10)

Also, if we suppose that the operator \(A\) is represented by (2.5), using the representation

\[
A^\dagger =
\begin{bmatrix}
0 & Y_{12} & 0 \\
Y_{21} & Y_{22} & 0 \\
0 & Y_{32} & 0 \\
Y_{41} & Y_{42} & 0 \\
\end{bmatrix} :
\begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A^*) \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{K}_3 \\
\mathcal{K}_4 \\
\end{bmatrix}.
\] (3.11)

where

\[
\begin{aligned}
A_{12}Y_{21} + A_{14}Y_{41} &= I, \\
A_{12}Y_{22} + A_{14}Y_{42} &= 0, \\
A_{23}Y_{32} &= I, A_{23}Y_{41} = 0, \\
Y_{41}A_{14} + Y_{22}A_{24} &= I, \\
Y_{11}A_{12} &= 0, Y_{31}A_{12} = 0, \\
(Y_{21}A_{14} + Y_{22}A_{24})^* &= Y_{41}A_{12}, \\
Y_{11}A_{14} + Y_{12}A_{24} &= 0, \\
Y_{31}A_{14} + Y_{32}A_{24} &= 0, \\
Y_{21}A_{12} &= I.
\end{aligned}
\] (3.12)

A simple computation shows that

\[
B^\dagger A^\dagger =
\begin{bmatrix}
-B_{11}^{-1}B_{12}B_{22}^{-1}Y_{21} & M_3 & 0 \\
B_{22}^{-1}Y_{21} & B_{22}^{-1}Y_{22} & 0 \\
0 & 0 & 0 \\
\end{bmatrix} :
\begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A^*) \\
\end{bmatrix} \rightarrow
\begin{bmatrix}
\mathcal{L}_1 \\
\mathcal{L}_2 \\
\mathcal{N}(B) \\
\end{bmatrix},
\] (3.13)

where \(M_3 = B_{11}^{-1}Y_{12} - B_{11}^{-1}B_{12}B_{22}^{-1}Y_{22}\).
Using the previous remark, we obtain the following result:

Theorem 3.3. Let \(\mathcal{H}, \mathcal{K} \) and \(\mathcal{L} \) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \), \(B \in \mathcal{B}(\mathcal{L}, \mathcal{K}) \) be such that \(\mathcal{R}(A), \mathcal{R}(B), \mathcal{R}(AB) \) are closed and \(AB \neq 0 \). Then the following statements are equivalent:

(i) \(B^\dagger A^\dagger \in (AB)\{1, 2, 3\} \).

(ii) \(B\{1, 2, 3\}A^\dagger \subseteq (AB)\{1, 2, 3\} \).

(iii) \(\mathcal{R}(A^*AB) = \mathcal{R}(B) \ominus [\mathcal{R}(B) \cap \mathcal{N}(A)] \).

Proof. As in Theorem 3.1, we will use the decompositions of spaces \(\mathcal{H}, \mathcal{K} \) and \(\mathcal{L} \). Also, we distinguish two cases:

(1) Let \(N(AB) \neq N(B) \).

(i)\(\Rightarrow\)(iii) If \(B^\dagger A^\dagger \in (AB)\{1, 2, 3\} \), then there exists an operator \(Z \in (AB)\{1, 2, 3\} \) such that \(B^\dagger A^\dagger = Z \), where \(Z \) is represented by (3.7). Comparing (3.7) with (3.13), we obtain \(Y_{21} = A_{12}^{-1}, Y_{22} = 0, Y_{12} = 0 \).

We have that (3.12) implies \(Y_{21} = A_{12}^{-1} \) only if \(A_{14} = 0 \) which implies the invertibility of \(A_{24} \). Hence

\[
A = \begin{bmatrix}
0 & A_{12} & 0 & 0 \\
0 & 0 & 0 & A_{24} \\
0 & 0 & 0 & 0 \\
\end{bmatrix} : \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A^*) \\
\end{bmatrix}.
\]

It is easy to get \(\mathcal{R}(A^*AB) = \mathcal{R}(B) \ominus [\mathcal{R}(B) \cap \mathcal{N}(A)] \).

(iii)\(\Rightarrow\)(i) Since \(\mathcal{R}(A^*AB) = \mathcal{R}(B) \ominus [\mathcal{R}(B) \cap \mathcal{N}(A)] \) is equivalent to \(A_{14} = 0 \), we obtain from (3.12) that \(Y_{21} = A_{12}^{-1}, Y_{22} = 0, Y_{12} = 0 \). Hence, \(B^\dagger A^\dagger \in (AB)\{1, 2, 3\} \).

(i)\(\Leftrightarrow\)(ii) Using the representation of arbitrary \(X \in B\{1, 2, 3\} \) given by (3.2), we get that \(XA^\dagger \in (AB)\{1, 2, 3\} \) if and only if \(B^\dagger A^\dagger \in (AB)\{1, 2, 3\} \).

(2) If \(N(AB) = N(B) \), the proof is analogous to the case (1).

\(\Box \)

The case \(K = \{1, 2, 4\} \) is treated completely analogously, and the corresponding result follows by taking adjoints, or by reversal of products:

Theorem 3.4. Let \(\mathcal{H}, \mathcal{K} \) and \(\mathcal{L} \) be Hilbert spaces and let \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \), \(B \in \mathcal{B}(\mathcal{L}, \mathcal{K}) \) be such that \(\mathcal{R}(A), \mathcal{R}(B), \mathcal{R}(AB) \) are closed and \(AB \neq 0 \). Then the following statements are equivalent:

(i) \(B^\dagger A^\dagger \in (AB)\{1, 2, 4\} \).

(ii) \(B^\dagger A\{1, 2, 4\} \subseteq (AB)\{1, 2, 4\} \).

(iii) \(\mathcal{R}(BB^*A^*) = \mathcal{R}(A^*) \ominus [\mathcal{R}(A^*) \cap \mathcal{N}(B^*)] \).

From the above two theorems, we get the following equivalent condition for the reverse order law for the Moore-Penrose inverse.
Theorem 3.5. Let H, K and L be Hilbert spaces and let $A \in \mathcal{B}(H,K)$, $B \in \mathcal{B}(L,H)$ be such that $\mathcal{R}(A), \mathcal{R}(B), \mathcal{R}(AB)$ are closed and $AB \neq 0$. Then the following statements are equivalent:

(i) $(AB)^\dagger = B^\dagger A^\dagger$.

(ii) $\mathcal{R}(A^*AB) = \mathcal{R}(B) \ominus \perp [\mathcal{R}(B) \cap \mathcal{N}(A)]$ and $\mathcal{R}(BB^*A^*) = \mathcal{R}(A^*) \ominus \perp [\mathcal{R}(A^*) \cap \mathcal{N}(B^*)]$.

Remark 3.4. The conditions (ii) from Theorem 3.5 are equivalent with the conditions $\mathcal{R}(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$ given in the paper by Greville [8] for matrices. Also, they are equivalent to those given in the Theorem 2.2 (c) [5] in the case of bounded operators on the Hilbert space.

Acknowledgement The authors wish to thank the anonymous reviewers for very valuable comments and suggestions concerning an earlier version of this paper.

References

