Mixed-type reverse-order laws for \{1,3,4\}-generalized inverses over Hilbert spaces

Xiaoji Liu \(^{a,2}\), Shaowu Huang \(^{a,2}\), Dragana S. Cvetković-Ilić \(^{b,*,1}\)

\(^{a}\)School of Science, Guangxi University for Nationalities, Nanning 530006, PR China
\(^{b}\)University of Niš, Department of Mathematics, Faculty of Sciences and Mathematics, 18000 Niš, Serbia

\textbf{Keywords:} Mixed-type, Block-operator matrix, Moore–Penrose inverse, Reverse order law, \{1,3,4\}-inverses

\textbf{Abstract}

The reverse order laws for \{1,3,4\}-generalized inverses of a product of two operators have been studied by Wang et al. [J. Wang, H. Zhang, G. Ji, A generalized reverse order law for the products of two operators, Journal of Shaanxi Normal University, 38 (4) (2010), 13–17]. In this paper using a block-operator matrix technique we study mixed-type reverse-order laws for \{1,3,4\}-generalized inverses over Hilbert spaces.

\(\copyright 2012\) Elsevier Inc. All rights reserved.

\section{Introduction}

Let \(\mathcal{H}\) and \(\mathcal{K}\) be complex Hilbert spaces. By \(\mathcal{L}(\mathcal{H}, \mathcal{K})\) we denote the set of bounded linear operators from \(\mathcal{H}\) to \(\mathcal{K}\). For a given \(T \in \mathcal{L}(\mathcal{H}, \mathcal{K})\), by \(\mathcal{N}(T)\) and \(\mathcal{R}(T)\) we denote the kernel of \(T\) and the range of \(T\), respectively.

Recall that \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K})\) has a Moore–Penrose inverse if there exists an operator \(G \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) such that

\[
\begin{align*}
(1) & \quad AGA = A \\
(2) & \quad GAG = G \\
(3) & \quad (AG)^\dagger = AG \\
(4) & \quad (GA)^\dagger = GA
\end{align*}
\]

Equations (1.1) are called the \(\{1,3,4\}\)-reverse order laws for \(A\). If one of the above equations holds for an \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K})\), we call \(A\) a \(\{1,3,4\}\)-inverse of \(A\).

In [17–21], Greville [8] proved that \((AB)^\dagger = B^\dagger A^\dagger\) if and only if \(\mathcal{R}(A^\dagger AB) \subseteq \mathcal{R}(B)\) and \(\mathcal{R}(BB^\dagger A^\dagger) \subseteq \mathcal{R}(A^\dagger)\), for matrices \(A\) and \(B\). This result was extended to linear bounded operators on Hilbert spaces in [10]. Later, the reverse order law for the Moore–Penrose inverse was considered in rings with involution. Werner [18] presented conditions for the inclusion \(B^\dagger A^\dagger \subseteq (AB)^\dagger\) to hold. Wei [19,20], Wei and Guo [21] studied reverse-order laws for \{1\}-inverses, \{1,3\}-inverses and \{1,4\}-inverses of matrix products. In [4], the reverse order laws for \{1,3\}, \{1,4\}, \{1,2,3\}, \{1,2,4\}-inverses were considered while in [5] the reverse order law for \{1,3,4\}-inverse in \(C^\ast\)-algebras was investigated. For other interesting results on this subject see [1,2,6,9,11–16,22–26]. In this paper, using a block-operator matrix technique, we obtain necessary and sufficient conditions for the mixed-type reverse-order laws for \{1,3,4\}-generalized inverses over Hilbert spaces.

\(\ast\) Corresponding author.

\(\text{E-mail addresses:}\) xiaojiliu72@yahoo.com.cn (X. Liu), shaowu2050@126.com (S. Huang), gagamaka@ptt.rs, dragana@pmf.ni.ac.rs (D.S. Cvetković-Ilić).

\(^1\) Supported by Grant No. 174007 of the Ministry of Science, Technology and Development, Republic of Serbia.

\(^2\) Supported by the National Natural Science Foundation of China 11061005, the Ministry of Education Science and Technology Key Project under Grant No. 210164, and Grants HCIC201103 of Guangxi Key Laboratory of Hybrid Computational and IC Design Analysis Open Fund.

0096-3003/$ - see front matter \(\copyright 2012\) Elsevier Inc. All rights reserved.

2. Preliminaries

Let \mathcal{H}, \mathcal{K} be Hilbert spaces and let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ have closed range. It is well-known that the operator A has the following decomposition (see, e.g., [7] or [3]).

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix},$$

(2.1)

where A_1 is an invertible. In that case, A^1 can be represented by

$$A^1 = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix}.$$

(2.2)

The following lemma will be useful:

Lemma 2.1. Let \mathcal{H}, \mathcal{K} be Hilbert spaces and $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$. If $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ has closed range, then

(i) $A(1, 3) = \{A^1 + (I - A^1)X : X \in \mathcal{L}(\mathcal{K}, \mathcal{H})\}$,

(ii) $A(1, 4) = \{A^1 + Y(I - AA^1) : Y \in \mathcal{L}(\mathcal{K}, \mathcal{H})\}$.

If $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ has closed range, then we can explicitly describe the sets $A(1, 3), A(1, 4), A(1, 2, 3), A(1, 2, 4)$ and $A(1, 3, 4)$ using the representation of A given by (2.1).

Lemma 2.2. Let \mathcal{H}, \mathcal{K} be Hilbert spaces and let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ be given by (2.1). If $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ has closed range, then

$$A(1, 3) = \begin{bmatrix} A_1^{-1} & 0 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix},$$

$$A(1, 4) = \begin{bmatrix} A_1^{-1} & X_2 \\ 0 & X_4 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix},$$

$$A(1, 2, 3) = \begin{bmatrix} A_1^{-1} & 0 \\ X_3 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix},$$

$$A(1, 2, 4) = \begin{bmatrix} A_1^{-1} & X_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix},$$

and

$$A(1, 3, 4) = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & X_4 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A^1) \\ \mathcal{N}(A) \end{bmatrix},$$

where X_2, X_3, and X_4 are arbitrary bounded linear operators defined on appropriate subspaces.

From the following lemma, which was proved in [17] we get a useful representation of two operators $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ and $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$.

Lemma 2.3 [17]. Let \mathcal{H} and \mathcal{K} be Hilbert spaces and let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ be such that $\mathcal{R}(A), \mathcal{R}(B), \mathcal{R}(AB)$ are closed. Let

$$\mathcal{H}_1 = \mathcal{R}(B) \cap \mathcal{N}(A),$$

$$\mathcal{H}_2 = \mathcal{R}(B) \oplus \mathcal{H}_1,$$

$$\mathcal{H}_3 = \mathcal{N}(B^*) \cap \mathcal{N}(A),$$

$$\mathcal{H}_4 = \mathcal{N}(B^*) \oplus \mathcal{H}_3.$$

Then A and B have the following operator matrix forms

$$A = \begin{bmatrix} 0 & A_{12} & 0 & A_{14} \\ 0 & 0 & A_{24} \end{bmatrix} : \begin{bmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{H}_4 \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{K}_1 \\ \mathcal{K}_2 \\ \mathcal{K}_3 \end{bmatrix}.$$

(2.3)
and

\[
B = \begin{bmatrix}
B_{11} & B_{12} & 0 \\
0 & B_{22} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} : \begin{bmatrix}
\mathcal{J}_1 \\
\mathcal{J}_2 \\
\mathcal{N}(B)
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix},
\]

(2.4)

where \(A_{12}, B_{11}, B_{22}\) are invertible and \(A_{24}\) is a surjection.

Lemma 2.4. Let \(\mathcal{H}\) and \(\mathcal{K}\) be Hilbert spaces and let \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed. If \(A\) and \(B\) are given by (2.3) and (2.4) respectively, then the set \(A\{1, 3, 4\}\) consists of all operator matrices \(X\) that can be represented by

\[
X = \begin{bmatrix}
0 & 0 & X_{13} \\
X_{21} & X_{22} & X_{23} \\
0 & 0 & X_{33} \\
X_{41} & X_{42} & X_{43}
\end{bmatrix} : \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix},
\]

(2.5)

where

\[
\begin{align*}
A_{12}X_{21} + A_{14}X_{41} &= 1, \\
A_{24}X_{41} &= 0, A_{24}X_{43} = 0, \\
A_{12}X_{23} + A_{14}X_{43} &= 0, \\
A_{12}X_{22} + A_{14}X_{42} &= 0, \\
A_{24}X_{42} &= I, \\
(X_{21}A_{14} + X_{22}A_{24})' &= X_{41}A_{12}
\end{align*}
\]

and

\[
X_{23}A_{12}, X_{41}A_{14} + X_{42}A_{24}
\]

are selfadjoint.

Also, the set \(B\{1, 3, 4\}\) consists of all such \(Y\) that can be represented by

\[
Y = \begin{bmatrix}
B_{11}^{-1} & -B_{11}^{-1}B_{12}B_{22}^{-1} & 0 & 0 \\
0 & B_{22}^{-1} & 0 & 0 \\
0 & 0 & F_1 & F_2
\end{bmatrix} : \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{J}_1 \\
\mathcal{J}_2 \\
\mathcal{N}(B)
\end{bmatrix},
\]

(2.8)

where \(F_1, F_2\) are arbitrary operators defined on appropriate subspaces.

Proof. The part concerning \(B\) follows trivially from **Lemma 2.2** and **Lemma 2.3**. Take an arbitrary \(X \in A\{1, 3, 4\}\) and represent it by

\[
X = \begin{bmatrix}
X_{11} & X_{12} & X_{13} \\
X_{21} & X_{22} & X_{23} \\
X_{31} & X_{32} & X_{33} \\
X_{41} & X_{42} & X_{43}
\end{bmatrix} : \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix},
\]

(2.9)

From \(XA = (XA)'\), the invertibility of \(A_{12}\) and the surjectivity of \(A_{24}\), we get that \(X_{11} = 0, X_{31} = 0, X_{12} = 0\) and \(X_{32} = 0\). Also, we get that \((X_{21}A_{14} + X_{22}A_{24})' = X_{41}A_{12}\) and that \(X_{21}A_{12}, X_{41}A_{14} + X_{42}A_{24}\) are selfadjoint.

By \(AXA = A\), we get \(A_{12}X_{21} + A_{14}X_{41} = 1, A_{24}X_{41} = 0\) and \(A_{24}X_{42} = I\). Now using \((AX)' = AX\) we obtain \(A_{12}X_{22} + A_{14}X_{42} = 0, A_{12}X_{23} + A_{14}X_{43} = 0\) and \(A_{24}X_{43} = 0\).

Remark that under the assumptions of the previous lemma, we have that \(Z \in \{AB\}\{1, 3, 4\}\) if and only if there exist \(M_1 \in \mathcal{L}(\mathcal{K}_2, \mathcal{J}_1), M_2 \in \mathcal{L}(\mathcal{N}(A'), \mathcal{J}_1), M_3 \in \mathcal{L}(\mathcal{K}_2, \mathcal{N}(B))\) and \(M_4 \in \mathcal{L}(\mathcal{N}(A'), \mathcal{N}(B))\) such that

\[
Z = \begin{bmatrix}
0 & M_1 & M_2 \\
B_{22}^{-1}A_{12} & 0 & 0 \\
0 & M_3 & M_4
\end{bmatrix} : \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix} \rightarrow \begin{bmatrix}
\mathcal{J}_1 \\
\mathcal{J}_2 \\
\mathcal{N}(B)
\end{bmatrix},
\]

(2.10)

Lemma 2.5. Let \(\mathcal{H}\) and \(\mathcal{K}\) be Hilbert spaces and let \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed. If \(B\) is given by (2.4) then \(B_{12} = 0\) if and only if \(B'(\mathcal{R}(B) \cap \mathcal{N}(A)) \subseteq B'(\mathcal{R}(B) \cap \mathcal{N}(A))\).
Suppose that operators B_1 and B_2 belong to \mathcal{H}_1. By Lemma 2.4, Theorem 3.1.

\begin{align*}
\mathcal{J}_1 & = \begin{pmatrix} \mathcal{H}_1 \\ \mathcal{H}_2 \\ \mathcal{H}_3 \\ \mathcal{N}(B) \end{pmatrix}, \\
\mathcal{J}_2 & = \begin{pmatrix} \mathcal{J}_1 \\ \mathcal{N}(B) \end{pmatrix}.
\end{align*}

Now, we have

$$B_{12} = 0 \iff B_{12}^* = 0 \iff B' \mathcal{H}_1 \subseteq \mathcal{J}_1.$$

By definition of \mathcal{H}_1 and \mathcal{J}_1, we have $B_{12} = 0$ if and only if $B' (\mathcal{R}(B) \cap \mathcal{N}(A)) \subseteq B' (\mathcal{R}(B) \cap \mathcal{N}(A))$. \square

3. Mixed-type reverse-order law of $\{1, 3, 4\}$–inverses

In this section we will give necessary and sufficient conditions for the reverse-order laws

$$B(1, 3, 4) \left(ABB^{(1,3,4)} \right)(1, 3, 4) \subseteq (AB)(1, 3, 4), \text{ for any } B^{(1,3,4)} \in B(1, 3, 4)$$

and

$$B(1, 3, 4)A(1, 3, 4) = (AB)(1, 3, 4).$$

Theorem 3.1. em Let \mathcal{H} and \mathcal{K} be Hilbert spaces and let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$, $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ be such that $\mathcal{R}(A)$, $\mathcal{R}(B)$ and $\mathcal{R}(AB)$ are closed. The following statements are equivalent:

1. $B(1, 3, 4) \left(ABB^{(1,3,4)} \right)(1, 3, 4) \subseteq (AB)(1, 3, 4)$, for any $B^{(1,3,4)} \in B(1, 3, 4)$,
2. $B' (\mathcal{R}(B) \cap \mathcal{N}(A)) \subseteq B' (\mathcal{R}(B) \cap \mathcal{N}(A))$.

Proof. Suppose that operators A and B are given by (2.3) and (2.4), respectively. We assume that $\mathcal{H}_i, \mathcal{K}_j, \mathcal{J}_j \neq 0$ for $i = 1, 4$, $j = 1, 2$. In other cases, the proof is similar.

(i) \Rightarrow (ii): Let $Y \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ be defined by

$$Y = \begin{bmatrix}
B_{11} & -B_{12}^*B_{22}^* & 0 & 0 \\
0 & B_{22}^* & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\mathcal{J}_1 \\
\mathcal{J}_2 \\
\mathcal{N}(B)
\end{bmatrix}.$$

By Lemma 2.4, $Y \in B(1, 3, 4)$. By simple computation we get that

$$ABY = \begin{bmatrix}
0 & A_{12} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix}.$$

Since the operator Z defined by

$$Z = \begin{bmatrix}
A_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\mathcal{H}_1 \\
\mathcal{H}_2 \\
\mathcal{H}_3 \\
\mathcal{H}_4
\end{bmatrix}.$$

belongs to $(AB)(1, 3, 4)$, by (i) we have that $YZ \in (AB)(1, 3, 4)$. From

$$YZ = \begin{bmatrix}
-B_{11}^*B_{12}B_{22}A_{12}^* & 0 & 0 \\
B_{22}^*A_{12}^* & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
: \begin{bmatrix}
\mathcal{K}_1 \\
\mathcal{K}_2 \\
\mathcal{N}(A')
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\mathcal{J}_1 \\
\mathcal{J}_2 \\
\mathcal{N}(B)
\end{bmatrix}.$$

\(X. Liu et al. / Applied Mathematics and Computation 218 (2012) 8570–8577 8573\)
using (2.10) we get $B_{12} = 0$. Now (ii) follows by Lemma 2.5.

(ii) \Rightarrow (i) Suppose that (ii) holds. Then

$$\begin{align*}
B &= \begin{bmatrix} B_{11} & 0 & 0 \\
0 & B_{22} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} : \begin{bmatrix} J_1 \\
J_2 \\
N(B) \\
\end{bmatrix} \rightarrow \begin{bmatrix} H_1 \\
H_2 \\
H_3 \\
H_4 \\
\end{bmatrix}.
\end{align*}$$

(3.5)

Let $Y_i \in B\{1, 3, 4\}$ be arbitrary and take any $S \in B\{1, 3, 4\}(ABY_1)\{1, 3, 4\}$. There exists $Y_2 \in B\{1, 3, 4\}$ such that $S \in Y_2(ABY_1)\{1, 3, 4\}$. By Lemma 2.4, we have that Y_1, Y_2 have the form

$$Y_i = \begin{bmatrix} B_{11}^{-1} & 0 & 0 & 0 \\
0 & B_{22}^{-1} & 0 & 0 \\
0 & 0 & F_{1i} & F_{2i} \\
\end{bmatrix} : \begin{bmatrix} H_1 \\
H_2 \\
H_3 \\
H_4 \\
\end{bmatrix} \rightarrow \begin{bmatrix} J_1 \\
J_2 \\
N(B) \\
\end{bmatrix}, \quad i = 1, 2,$n

(3.6)

for some operators $F_{1i}, F_{2i}, i = 1, 2$. Now

$$ABY_1 = \begin{bmatrix} 0 & A_{12} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} : \begin{bmatrix} H_1 \\
H_2 \\
H_3 \\
H_4 \\
\end{bmatrix} \rightarrow \begin{bmatrix} K_1 \\
K_2 \\
N(A') \\
\end{bmatrix}$$

and $Z \in (ABY_1)\{1, 3, 4\}$ if and only if there exist operators $K_i, i = 1, 2, 3, 4$ such that

$$Z = \begin{bmatrix} 0 & K_1 & K_2 \\
A_{12}^{-1} & 0 & 0 \\
0 & K_3 & K_4 \\
0 & K_5 & K_6 \\
\end{bmatrix} : \begin{bmatrix} K_1 \\
K_2 \\
N(A') \\
\end{bmatrix} \rightarrow \begin{bmatrix} H_1 \\
H_2 \\
H_3 \\
H_4 \\
\end{bmatrix}.$$n

(3.7)

Hence, arbitrary $S \in Y_2(ABY_1)\{1, 3, 4\}$ has the form

$$S = \begin{bmatrix} 0 & B_{11}^{-1}K_1 & B_{11}^{-1}K_2 \\
B_{22}^{-1}A_{12}^{-1} & 0 & 0 \\
0 & F_{1i}K_3 + F_{2i}K_5 & F_{1i}K_4 + F_{2i}K_6 \\
\end{bmatrix} : \begin{bmatrix} K_1 \\
K_2 \\
N(A') \\
\end{bmatrix} \rightarrow \begin{bmatrix} J_1 \\
J_2 \\
N(B) \\
\end{bmatrix},$$

for some operators $K_i, i = 1, 2, 3, 4.$

Now, by (2.10) we get $S \in (AB)\{1, 3, 4\}$. □

Theorem 3.2. Let \mathcal{H} and \mathcal{K} be Hilbert spaces and let $A \in \mathcal{L}(\mathcal{H}, \mathcal{K})$, $B \in \mathcal{L}(\mathcal{K}, \mathcal{H})$ be such that $\mathcal{R}(A), \mathcal{R}(B)$ and $\mathcal{R}(AB)$ are closed. The following statements are equivalent:

(i) $ABB\{1, 3, 4\}A\{1, 3, 4\}AB = AB$,

(ii) $B'A\{1, 3, 4\}AB = B'(ABB^{(1,3,4)})AB$, for any $B^{(1,3,4)} \in B\{1, 3, 4\}$.

Proof. Suppose that operators A and B are given by (2.3) and (2.4), respectively. We assume that $\mathcal{H}_i, \mathcal{K}_i, J_i \neq 0$ for $i = 1, 2$. In other cases, the proof is similar.

Pick arbitrary $X_1, X_2, Y \in B\{1, 3, 4\}$. By Lemma 2.4 we have that X, Y are represented by (2.5) and (2.8) respectively. From (i) we have that $ABXYAB = AB$. Remark that

$$ABXYAB = \begin{bmatrix} 0 & A_{12}X_{21}A_{12}B_{22} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} : \begin{bmatrix} J_1 \\
J_2 \\
N(B) \\
\end{bmatrix} \rightarrow \begin{bmatrix} K_1 \\
K_2 \\
N(A') \\
\end{bmatrix}.$$n

(3.8)

and

$$AB = \begin{bmatrix} 0 & A_{12}B_{22} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} : \begin{bmatrix} J_1 \\
J_2 \\
N(B) \\
\end{bmatrix} \rightarrow \begin{bmatrix} K_1 \\
K_2 \\
N(A') \\
\end{bmatrix}.$$n

(3.9)

From (3.8) and (3.9) and the invertibility of A_{12} and B_{22}, we get $ABB\{1, 3, 4\}A\{1, 3, 4\}AB = AB$ if and only if $X_{21} = A_{12}^{-1}$.

On the other hand,
\[
B' X A B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & B_{22} X A_1 & A_2 B_{22} \\ 0 & 0 & 0 \end{bmatrix}.
\] (3.10)

and for any \(B^{(1,3,4)} \in B(1,3,4)\),
\[
B'(ABB^{(1,3,4)}) A B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & B_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\] (3.11)

Now, from (3.10), (3.11) and the invertibility of \(B_{22}\), we get \(B' X A B = B'(ABB^{(1,3,4)}) A B\), for any \(B^{(1,3,4)} \in B(1,3,4)\) if and only if \(X_{21} = A_{12}^{-1}\). Hence, (i) \(\iff\) (ii).

Theorem 3.3. Let \(\mathcal{H}\) and \(\mathcal{K}\) be Hilbert spaces and let \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed. The following statements are equivalent:

1. \((AB)(1,3,4)A = B(1,3,4)A(1,3,4)AB,\)
2. \(ABB'B(1,3,4) = ABB'A(1,3,4)ABB(1,3,4)\) and \(\mathcal{R}(ZAB) = \mathcal{R}(YXAB)\), for any \(Z \in (AB)(1,3,4), X \in A(1,3,4), Y \in B(1,3,4).\)

Proof. Suppose that operators \(A\) and \(B\) are given by (2.3) and (2.4), respectively. We assume that \(\mathcal{H}_i, \mathcal{K}_j, \mathcal{J}_j \neq 0\) for \(i = 1, 2, 3, 4\), \(j = 1, 2\). In other cases, the proof is similar. Pick arbitrary \(X \in A(1,3,4), Y \in B(1,3,4)\) and \(Z \in (AB)(1,3,4)\). By computation, we get
\[
Z A B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]
and
\[
Y X A B = \begin{bmatrix} 0 & -B_{11}^{-1} B_{12} X_{21} A_1 & A_2 B_{22} \\ 0 & B_{21}^{-1} X_{21} A_2 B_{12} & 0 \\ 0 & F_2 X_{41} A_1 A_2 B_{22} & 0 \end{bmatrix}.
\] (3.12)

Also,
\[
A B' B Y = \begin{bmatrix} A_1 B_{22} B_1' B_2 & A_1 B_{22} B_{22}' \end{bmatrix}
\]
and
\[
A B' X A B Y = \begin{bmatrix} 0 & A_1 B_{22} B_{22}' X_{21} A_1 \end{bmatrix}
\]

(i) \(\Rightarrow\) (ii): If (i) holds, then by (3.12) we have \(B_{12} = 0, X_{21} = A_{12}^{-1}\) and \(X_{41} = 0\). So (ii) holds.

(ii) \(\Rightarrow\) (i): From \(ABB'B(1,3,4) = ABB'A(1,3,4)ABB(1,3,4)\) we obtain \(B_{12} = 0\) and \(X_{21} = A_{12}^{-1}\). By \(\mathcal{R}(ZAB) = \mathcal{R}(YXAB)\) we get \(F_2 X_{41} = 0\). Since \(F_2\) is arbitrary, it follows \(X_{41} = 0\). Hence, (i) holds.

Theorem 3.4. Let \(\mathcal{H}\) and \(\mathcal{K}\) be Hilbert spaces and let \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K}), B \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed. The following statements are equivalent:

1. \(B' A(1,3,4) = (AB)\)
2. \(B' X \in B'(AB)(1,3,4) = (AB)(1,3,4)\) and \(\mathcal{R}(BB' X) = \mathcal{R}((AB)^*)\), for any \(X \in A(1,3,4), Y \in B(1,3,4)\).

Proof. Pick arbitrary \(X \in A(1,3,4), Y \in B(1,3,4)\). By Lemma 2.4 we have that \(X, Y\) are represented by (2.5) and (2.8) respectively. Since
\[
A B Y = \begin{bmatrix} 0 & A_{12} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]
we have that any $Z \in (ABY)\{1, 3, 4\}$ has the matrix form

$$Z = \begin{bmatrix} 0 & K_1 & K_2 \\ A_{12}^{-1} & 0 & 0 \\ 0 & K_3 & K_4 \\ 0 & K_5 & K_6 \end{bmatrix}$$

for some operators K_i, $i = 1, 6$.

From Lemma 2.4 we get

$$B^i Z = \begin{bmatrix} -B_{11}^{-1}B_{12}B_{22}^{-1}A_{12}^{-1} & B_{11}^{-1}K_1 & B_{11}^{-1}K_2 \\ B_{22}^{-1}A_{12}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and for arbitrary $X \in A\{1, 3, 4\}$,

$$B^i X = \begin{bmatrix} -B_{11}^{-1}B_{12}B_{22}^{-1}X_{21} & -B_{11}^{-1}B_{12}B_{22}^{-1}X_{22} & -B_{11}^{-1}B_{12}B_{22}^{-1}X_{23} \\ B_{22}^{-1}X_{21} & B_{22}^{-1}X_{22} & B_{22}^{-1}X_{23} \\ 0 & 0 & 0 \end{bmatrix}$$

(i) \Rightarrow (ii): From $B^i A\{1, 3, 4\} = (AB)^i$ it follows that $X_{21} = A_{12}^{-1}$, $X_{13} = 0$, $X_{22} = 0$, $X_{23} = 0$ and $B_{12} = 0$. Hence, from (3.13) and (3.14), we get that (ii) holds.

(ii) \Rightarrow (i): If (ii) holds, we get $X_{21} = A_{12}^{-1}$, $X_{22} = 0$, $X_{23} = 0$ and $B_{12} = 0$. Hence, we have that

$$B^i X = \begin{bmatrix} 0 & 0 & B_{11}^{-1}X_{13} \\ B_{22}^{-1}A_{12} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(3.15)

Since

$$BB^i X = \begin{bmatrix} 0 & 0 & X_{13} \\ A_{12}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and $(ABY)^i = \begin{bmatrix} 0 & 0 & 0 \\ A_{12}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

from $\mathcal{R}(BB^i X) = \mathcal{R}((ABY)^i)$, we conclude $X_{13} = 0$. Hence, (i) holds.

Theorem 3.5. Let H and K be Hilbert spaces and let $A \in \mathcal{L}(H,K)$, $B \in \mathcal{L}(K,H)$ be such that $\mathcal{R}(A)$, $\mathcal{R}(B)$ and $\mathcal{R}(AB)$ are closed. The following statements are equivalent:

(i) $(AB)^i \{1, 3, 4\} \subseteq (B\{1, 3, 4\})^i$,

(ii) $B^i (R(B) \cap N(A)) \subseteq B^i (R(B) \cap N(A))$.

Proof. Suppose that operators A and B are given by (2.3) and (2.4), respectively. We assume that $\mathcal{H}_i, \mathcal{K}_j, \mathcal{J}_j \neq 0$ for $i = 1, 4$, $j = 1, 2$. In other cases, the proof is similar.

By (2.8) and (2.10), for arbitrary $B^{i,1,3,4} \in B\{1, 3, 4\}$, we get

$$(AB)^i \{1, 3, 4\} = \begin{bmatrix} 0 & 0 & 0 \\ B_{11}^{-1}B_{12} & 0 & 0 \\ 0 & F_1 & F_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ B_{22}^{-1}A_{12}^{-1} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(3.17)

By (2.3) and (2.4), we have

$$BAB = \begin{bmatrix} 0 & B_{11}A_{12}B_{22} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(3.18)
Therefore, arbitrary \((BAB)^{(1,3,4)} \in (BAB)\{1,3,4\}\) is given by
\[
(BAB)^{(1,3,4)} = \begin{bmatrix}
0 & L_1 & L_2 \\
B_{12}^{-1}A_{12}^{-1} & 0 & 0 \\
0 & L_4 & L_5 \\
\end{bmatrix}
\]
for some operators \(L_i, i = 1,6\).

Hence, from (3.17), (3.19) and Lemma 2.5, we get \((AB)^\dagger B\{1,3,4\} \subseteq (BAB)\{1,3,4\}\) if and only if \(B_{12} = 0\) if and only if \(B^\dagger (\mathcal{R}(B) \cap \mathcal{N}(A)) \subseteq B^{\dagger}\).

Now, from Theorem 3.1 and Theorem 3.5, we get the following corollary:

Corollary 3.1. Let \(\mathcal{H}\) and \(\mathcal{K}\) be Hilbert spaces and let \(A \in \mathcal{L}(\mathcal{H}, \mathcal{K})\), \(B \in \mathcal{L}(\mathcal{K}, \mathcal{H})\) be such that \(\mathcal{R}(A), \mathcal{R}(B)\) and \(\mathcal{R}(AB)\) are closed. The following statements are equivalent:

1. \(B\{1,3,4\} (AB)^{(1,3,4)} \subseteq (BAB)\{1,3,4\}\), for any \(B^{(1,3,4)} \in B\{1,3,4\}\),
2. \((AB)^\dagger B\{1,3,4\} \subseteq (BAB)\{1,3,4\}\).

References

22. H.J. Werner, When is \(B^{\dagger}A\) a generalized inverse of \(AB^\dagger\)? Linear Algebra Appl. 210 (1994) 255–263.