On a problem of N. Thome and Y. Wei

Dragana S. Cvetković-Ilić

Abstract

In this note we solve a recent problem posed by N. Thome and Y. Wei (Appl. Math. Comput. 141, (2003)).

Department of Mathematics, Faculty of Science,
University of Niš,
P.O. Box 224, Višegradska 33,
18000 Niš, Serbia
E-mail: dragana@pmf.ni.ac.yu

Let $C^{m \times n}$ denote the set of complex $m \times n$ matrices. If $A \in C^{n \times n}$, the matrix $X \in C^{n \times n}$ which satisfies the following

$$A^k X A = A^k, \quad XAX = X, \quad AX =XA,$$

is called the Drazin inverse of A and it is denoted by A^d. The smallest number k such that there exist X which satisfies (1) is called the index of A and it is denote by $\text{ind}(A)$.

Let us recall that N. Thome and Y. Wei [1] have proved the following theorem:

Theorem 1 Let $A \in C^{n \times n}$ with $\text{ind}(A) = 1$, $\text{rank}(A) = r$, B, C and $X \in C^{n \times n}$. The matrix A can be written as

$$A = P^{-1} \begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} P,$$

Key words and phrases: Rank equation; Drazin inverse

2000 Mathematics Subject Classification: 15A10

Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia.
where $P \in C^{n \times n}, M \in C^{r \times r}$ are nonsingular matrices and M is upper bidiagonal. Then $X = A^d$ is the solution of the equation

$$\operatorname{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \operatorname{rank}(A),$$

if and only if

$$B = P^{-1} \begin{bmatrix} MG_1 & 0 \\ 0 & 0 \end{bmatrix} P \text{ and } C = P^{-1} \begin{bmatrix} M^{-1}G_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} P$$

for some nonsingular matrix $G_1 \in C^{r \times r}$.

They set the following question: Is it possible to extend Theorem 1 in the case when $\text{ind}(A) = k > 1$? In this note we solved that question.

Let us recall that the Moore-Penrose inverse of $A \in C^{n \times m}$ is the unique matrix $A^\dagger \in C^{m \times n}$ which satisfies

$$AA^\dagger A = A, \ A^\dagger AA^\dagger = A^\dagger, \ (AA^\dagger)^* = AA^\dagger, \ (A^\dagger A)^* = A^\dagger A$$

and the inner inverse of A is the matrix A^- which satisfies $AA^-A = A$. By A^*, $R(A)$ and $\operatorname{rank}(A)$ we denote the conjugate transpose, the range and the rank of $A \in C^{n \times m}$.

Notice that the conditions $R(B) \subseteq R(A)$ and $R(C^\ast) \subseteq R(A^\ast)$ are equivalent to $AA^\dagger B = B$ and $CA^\dagger A = C$. Furthermore, matrix product $CA^\dagger B$ is invariant with respect to the choice of generalized inverse A^- of A if and only if $R(B) \subseteq R(A)$ and $R(C^\ast) \subseteq R(A^\ast)$.

Now, we give our main result:

Theorem 2 Let $A \in C^{n \times n}, \ ind(A) = k, \ \operatorname{rank}(A^k) = r$ and $B, C, X \in C^{n \times n}$. The matrix A can be written as

$$A = P^{-1} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} P,$$

where $P \in C^{n \times n}, M \in C^{r \times r}$ are nonsingular and $N \in C^{(n-r) \times (n-r)}$ is nilpotent. Then $X = A^d$ is a solution of the equation (3) if and only if there exist $G_1, F_1 \in C^{r \times r}, \ G_2, F_2 \in C^{r \times (n-r)}, \ G_3, F_3 \in C^{(n-r) \times r},$ and $G_4, F_4 \in C^{(n-r) \times (n-r)}$ such that

$$B = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P \text{ and } C = P^{-1} \begin{bmatrix} F_1M & F_2N \\ F_3M & F_4N \end{bmatrix} P$$

(6)
and
\[F_1 MG_1 + F_2 NG_3 = M^{-1}, \tag{7} \]
\[F_1 MG_2 + F_2 NG_4 = 0, \]
\[F_3 MG_1 + F_4 NG_3 = 0, \]
\[F_3 MG_2 + F_4 NG_4 = 0. \]

Proof. Suppose that \(X = A^d \) is a solution of the equation (3). By \([2, \text{Theorem 1}]\) we have that \(R(B) \subseteq R(A) \) and \(R(C^*) \subseteq R(A^*) \), so there exist matrices \(G \) and \(F \) such that \(B = AG \), \(C = FA \) and \(A^d = CA^*B \). Let
\[PGP^{-1} = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} \quad \text{and} \quad PP^{-1} = \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix}. \]

It follows that
\[B = P^{-1} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} P = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P \]
and
\[C = P^{-1} \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} P = P^{-1} \begin{bmatrix} F_1 M & F_2 N \\ F_3 M & F_4 N \end{bmatrix} P. \]

Also, we know that for matrix \(A \) which has the form (5),
\[A^d = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P \quad \text{and} \quad A^* = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & N^{-1} \end{bmatrix} P. \]

Hence,
\[A^d = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P = \]
\[P^{-1} \begin{bmatrix} F_1 M & F_2 N \\ F_3 M & F_4 N \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & N^{-1} \end{bmatrix} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P = \]
\[P^{-1} \begin{bmatrix} F_1 MG_1 + F_2 NG_3 & F_1 MG_2 + F_2 NG_4 \\ F_3 MG_1 + F_4 NG_3 & F_3 MG_2 + F_4 NG_4 \end{bmatrix} P. \]

So, we obtain the following system
\[F_1 MG_1 + F_2 NG_3 = M^{-1}, \]
\[F_1 MG_2 + F_2 NG_4 = 0, \]
\[F_3 MG_1 + F_4 NG_3 = 0, \]
\[F_3 MG_2 + F_4 NG_4 = 0. \]
Conversly, suppose that B and C satisfy (6). Then $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$ and by [2], Theorem 1 we have that there exist a solution $X = CA^{-B}$ of the equation (3). Thus (7) implies that $CA^{-B} = A^d$, that is $X = A^d$ is a solution of the equation (3).

Now, we obtain Theorem 1 as a corollary of Theorem 2.

Proof of Theorem 1. If we assume that $X = A^d$ is the solution of (3), then by Theorem 2 it follows that

$$B = P^{-1}\begin{bmatrix} MG_1 & MG_2 \\ 0 & 0 \end{bmatrix}P, \quad C = P^{-1}\begin{bmatrix} F_1M & 0 \\ F_3M & 0 \end{bmatrix}P,$$

and

$$F_1MG_1 = M^{-1},$$

$$F_1MG_2 = 0,$$

$$F_3MG_1 = 0,$$

$$F_3MG_2 = 0.$$

From $F_1MG_1 = M^{-1}$ we obtain that F_1 and G_1 are nonsingular matrices and $F_1M = M^{-1}G_1^{-1}$. Now, from $F_1MG_2 = 0$ and $F_3MG_1 = 0$, we have that $G_2 = F_3 = 0$. Hence, we obtain (4). Conversely, if we assume that B and C have the form (4), then for $G_2 = F_3 = 0$ and $F_1 = M^{-1}G_1^{-1}M^{-1}$ we verify that the conditions (6) and (7) hold. Hence $X = A^d$ is the solution of the equation (3).

References
