A Note on Generalized Inverses and a Block-Rank Equation

Dragana S. Cvetković-Ilić

Abstract

In this paper we study the rank equation \(\text{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \text{rank}(A) \)
and find the necessary and sufficient conditions when \(X = A^{(1,2)} \) and \(X = A^d \) are the solutions of that equation. In both cases we give an explicit form of matrices \(B \) and \(C \).

Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš
P.O. Box 224, Viswađarska 33, 18000 Niš, Serbia
E-mail: dragana@pmf.ni.ac.yu gagamaka@ptt.yu

1 Introduction

Let \(C^{m \times n} \) denote the set of complex \(m \times n \) matrices. \(I_n \) denotes the unit matrix of order \(n \). By \(A^*, R(A), \text{rank}(A) \) and \(N(A) \) we denote the conjugate transpose, the range, the rank and the null space of \(A \in C^{n \times m} \). The symbol \(A^- \) stands for an arbitrary generalized inner inverse of \(A \), i.e. \(A^- \) satisfies \(AA^-A = A \). By \(A^\dagger \) we denote the Moore-Penrose inverse of \(A \), i.e. the unique matrix \(A^\dagger \) satisfying

\[
AA^\dagger A = A, \quad A^\dagger AA^\dagger = A^\dagger, (AA^\dagger)^* = AA^\dagger, \quad (A^\dagger A)^* = A^\dagger A.
\]

Key words and phrases: Rank equation; generalized inverses; Drazin inverse
2000 Mathematics Subject Classification: 15A24, 15A09
Supported by Grant No. 1232 of the Ministry of Science, Technology and Development, Republic of Serbia.
For $A \in C^{n \times n}$ the smallest nonnegative integer k such that $\text{rank}(A^{k+1}) = \text{rank}(A^k)$ is called the index of A and denoted by $\text{ind}(A)$. If $A \in C^{n \times n}$, with $\text{ind}(A) = k$, then the matrix $X \in C^{n \times n}$ which satisfies the following conditions
$$A^kXA = A^k, \quad XAX = X, \quad AX = XA,$$
is called the Drazin inverse of A and it is denoted by A^d. When $\text{ind}(A) = 1$ then the Drazin inverse A^d is called the group inverse and it is denoted by $A^#$. Also, the matrix X which satisfies
$$AXA = A \quad \text{and} \quad XAX = X$$
is called the reflexive inverse of A and it is denoted by $A^{(1,2)}$. For other important properties of generalized inverses see [1] and [3].

In this paper we will consider the rank equation
$$\text{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \text{rank}(A), \quad (1)$$
for arbitrary $A \in C^{n \times n}$. First, we give a necessary and sufficient conditions such that $X = A^{(1,2)}$ is the solution of equation (1) and all possible matrices B and C are described. As a corollary we obtain the result of J. Gross [8] and N. Thome and Y. Wei [7]. Moreover, we consider when $X = A^d$ is the solution of the equation (1), for an arbitrary matrix A with $\text{ind}(A) = k \geq 1$ and we obtain some interesting corollaries.

2 Main results

We start this section with some well-known results. The following lemma was proved in [4], [5] and [6].

Lemma 2.1 Let $A \in C^{n \times n}, B \in C^{n \times m}, C \in C^{m \times n}$ and $X \in C^{m \times m}$. Then
$$\text{rank} \begin{bmatrix} A & B \\ C & X \end{bmatrix} = \text{rank}(A) + \text{rank}(L) + \text{rank}(M) + \text{rank}(W),$$
where $S = I_n - A^{-1}A$, $L = CS$, $M = SB$ and $W = (I_m - LL^{-})(X - CA^{-}B)(I_m - M^{-}M)$.

The following theorem, which is proved by J. Gross [8], gives a characterization of the existence of the solution (1) by means of geometrical conditions.
Theorem 2.1 Let $A \in C^{m \times n}, B \in C^{m \times m}$ and $C \in C^{n \times n}$. Then there exists a solution $X \in C^{n \times m}$ of the equation (1) if and only if $R(B) \subseteq R(A)$ and $R(C^\ast) \subseteq R(A^\ast)$, in which case $X = CA^\dagger B$.

Notice that the conditions $R(B) \subseteq R(A)$ and $R(C^\ast) \subseteq R(A^\ast)$ are equivalent to $AA^\dagger B = B$ and $CA^\dagger A = C$. Also, the matrix product $CA^{-}B$ is invariant with respect to the choice of generalized inverse A^{-} of A if and only if $R(B) \subseteq R(A)$ and $R(C^\ast) \subseteq R(A^\ast)$.

First we consider a necessary and sufficient condition such that $X = A^{(1,2)}$ is the solution of the equation (1) and in this case we find the explicit form for B and C.

Matrix $A \in C^{m \times n}$ such that $\text{rank}(A) = r$ can be decomposed by

$$A = P \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} Q,$$ \hspace{1cm} \text{(2)}

where $P \in C^{m \times m}, Q \in C^{n \times n}$ and $D \in C^{r \times r}$ are invertible matrices. Given that decomposition arbitrary reflexive generalized inverse of A has the following form

$$A^{(1,2)} = Q^{-1} \begin{bmatrix} D^{-1} & U \\ V & VDU \end{bmatrix} P^{-1},$$ \hspace{1cm} \text{(3)}

where U and V are arbitrary matrices of suitable size (see [2]).

The following theorem gives a sufficient and necessary conditions such that $X = A^{(1,2)}$ is the solution of the equation (1).

Theorem 2.2 Let $A \in C^{m \times n}, B \in C^{m \times m}$, $C \in C^{n \times n}$ and $X \in C^{n \times m}$ and let the matrix A and its reflexive generalized inverse be given by (2) and (3) respectively. Then $X = A^{(1,2)}$ is the solution of the equation (1) if and only if

$$B = P \begin{bmatrix} DL & (DLD)U \\ 0 & 0 \end{bmatrix} P^{-1} \quad \text{and} \quad C = Q^{-1} \begin{bmatrix} D^{-1}L^{-1} & 0 \\ VL^{-1} & 0 \end{bmatrix} Q,$$ \hspace{1cm} \text{(4)}

for some nonsingular matrix $L \in C^{r \times r}$.

3
Proof. Suppose that $X = A^{(1,2)}$ is the solution of the equation (1). Then there exist matrices $G \in C^{n \times m}$ and $F \in C^{n \times m}$ such that $B = AG$ and $C = FA$ and $CA^{-1}B = A^{(1,2)}$. Let

$$QGP = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} \quad \text{and} \quad QFP = \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix}.$$

Hence,

$$B = AG = P \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} P^{-1} = P \begin{bmatrix} DG_1 & DG_2 \\ 0 & 0 \end{bmatrix} P^{-1} \quad (5)$$

and

$$C = FA = Q^{-1} \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} Q = Q^{-1} \begin{bmatrix} F_1D & 0 \\ F_3D & 0 \end{bmatrix} Q. \quad (6)$$

Also,

$$A^{(1,2)} = FAG = Q^{-1} \begin{bmatrix} F_1DG_1 & F_1DG_2 \\ F_3DG_1 & F_3DG_2 \end{bmatrix} P^{-1}.$$

Now, from (3) we have that

$$F_1DG_1 = D^{-1}, \quad F_1DG_2 = U, \quad F_3DG_1 = V.$$

From the first equation we obtain that F_1, G_1 are invertible matrices and $F_1D = D^{-1}G_1^{-1}$. Now, $DG_2 = F_1^{-1}U = DG_1DU$ and $F_3D = VG_1^{-1}$. If we replace that in (5) and (6) and put $G_1 = L$, we obtain (4).

Now, suppose that (4) holds. Then $AA^{-1}B = B$ and $C = CA^{-1}A$, for generalized inner inverse A^{-1} of A, which is given by

$$A^{-1} = Q^{-1} \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}.$$

So by Theorem 2.1 there exists a solution $X = CA^{-1}B$ of the equation (1). By (4) we can easily check that $X = CA^{-1}B = A^{(1,2)}$. \hfill \Box

Remark that when we consider the special reflexive inverse of A,

$$A^{(1,2)} = Q^{-1} \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}, \quad (7)$$

for $U = V = 0$, we obtain the ([7], Theorem 3).
Corollary 2.1 Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times m}$, $C \in \mathbb{C}^{n \times n}$ and $X \in \mathbb{C}^{n \times m}$. Let the matrix A and one its reflexive generalized inverses be given by (2) and (7) respectively. Then $X = A^{(1,2)}$ is the solution of the equation (1) if and only if

$$B = P \begin{bmatrix} DL & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \quad \text{and} \quad C = Q^{-1} \begin{bmatrix} D^{-1}L^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q,$$

for some nonsingular matrix $L \in \mathbb{C}^{r \times r}$.

Now, we consider the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ such that $\text{rank}(A) = r$

$$A = M \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} N^*,$$

where $M \in \mathbb{C}^{m \times m}$ and $N \in \mathbb{C}^{n \times n}$ are unitary and $D \in \mathbb{C}^{r \times r}$ is a real positive definite diagonal matrix. By Theorem 2.2 we obtain ([8], Theorem 2).

Corollary 2.2 Let $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{m \times m}$, $C \in \mathbb{C}^{n \times n}$ and $X \in \mathbb{C}^{n \times m}$. Let the matrix A be given by (9). Then $X = A^\dagger$ is the solution of the equation (1) if and only if

$$B = M \begin{bmatrix} DL & 0 \\ 0 & 0 \end{bmatrix} M^* \quad \text{and} \quad C = N \begin{bmatrix} D^{-1}L^{-1} & 0 \\ 0 & 0 \end{bmatrix} N^*,$$

for some nonsingular matrix $L \in \mathbb{C}^{r \times r}$.

Proof. Taking $P = M$ and $Q = N^*$ in (2) we obtain that the matrix A has the representation (9) and in that case $A^\dagger = N \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} M^*$, which has the form (7). Hence, the result follows from Corollary 2.1. □

In the rest of the paper, we consider the following question: When $X = A^d$ is the solution of the equation (1)?

First, let $A \in \mathbb{C}^{m \times n}$ and $\text{ind}(A) = 1$. Using the Jordan canonical form of A, there exist nonsingular matrices $P \in \mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{r \times r}$ such that

$$A = P \begin{bmatrix} D^* & 0 \\ 0 & 0 \end{bmatrix} P^{-1}.$$

We obtain the result of N.Thome and Y. Wei ([7], Theorem 2).
Theorem 2.3 Let \(A \in \mathbb{C}^{n \times n} \) with \(\text{ind}(A) = 1 \) and \(\text{rank}(A) = r \) be given by (11), let \(B, C, X \in \mathbb{C}^{n \times n} \). Then \(X = A^\# \) is the solution of the equation (1) if and only if
\[
B = P \begin{bmatrix} DL & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \quad \text{and} \quad C = P \begin{bmatrix} D^{-1}L^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}, \tag{12}
\]
for some nonsingular matrix \(L \in \mathbb{C}^{r \times r} \).

Proof. If the matrix \(A \) is given by (11), then \(A^\# = P \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1} \).

Hence, the result follows from Corollary 2.1 taking \(Q = P^{-1} \) and noticing that \(A^\# \) is given by (7).

Now, we consider a more general case when \(A \in \mathbb{C}^{n \times n} \) is such that \(\text{ind}(A) = k \geq 1 \) and \(\text{rank}(A) = r \). Then the matrix \(A \) can be written as
\[
A = P^{-1} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} P, \tag{13}
\]
where \(P \in \mathbb{C}^{n \times n} \), \(M \in \mathbb{C}^{r \times r} \) are nonsingular matrices and \(N \in \mathbb{C}^{(n-r) \times (n-r)} \) is nilpotent, that is \(N^k = 0 \). In this case
\[
A^d = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P.
\]

Theorem 2.4 Let \(A \in \mathbb{C}^{n \times n} \), with index \((A) = k \), be represented by (13) and \(B, C, X \in \mathbb{C}^{n \times n} \). Then \(X = A^d \) is the solution of the equation (1) if and only if there exist \(G_1, F_1 \in \mathbb{C}^{r \times r} \), \(G_2, F_2 \in \mathbb{C}^{r \times (n-r)} \), \(G_3, F_3 \in \mathbb{C}^{(n-r) \times r} \) and \(G_4, F_4 \in \mathbb{C}^{(n-r) \times (n-r)} \) such that
\[
B = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P \quad \text{and} \quad C = P^{-1} \begin{bmatrix} F_1M & F_2N \\ F_3M & F_4N \end{bmatrix} P \tag{14}
\]
and
\[
F_1MG_1 + F_2NG_3 = M^{-1}, \tag{15}
\]
\[
F_1MG_2 + F_2NG_4 = 0,
\]
\[
F_3MG_1 + F_4NG_3 = 0,
\]
\[
F_3MG_2 + F_4NG_4 = 0.
\]
Proof. Suppose that $X = A^d$ is the solution of the equation (1). From Theorem 2.1 we have that $R(B) \subseteq R(A)$ and $R(C^*) \subseteq R(A^*)$, so there exist matrices G and F such that $B = AG$ and $C = FA$ and $A^d = CA^\dagger B$. Let

$$P G P^{-1} = \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} \quad \text{and} \quad P F P^{-1} = \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix}.$$

It follows that

$$B = P^{-1} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} \begin{bmatrix} G_1 & G_2 \\ G_3 & G_4 \end{bmatrix} P = P^{-1} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P$$

and

$$C = P^{-1} \begin{bmatrix} F_1 & F_2 \\ F_3 & F_4 \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix} P = P^{-1} \begin{bmatrix} F_1 M & F_2 N \\ F_3 M & F_4 N \end{bmatrix} P.$$

Since the matrix A has the form (13), it follows that

$$A^d = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P \quad \text{and} \quad A^\dagger = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & N^\dagger \end{bmatrix} P.$$

Hence,

$$A^d = P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P$$

$$= P^{-1} \begin{bmatrix} F_1 M & F_2 N \\ F_3 M & F_4 N \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & N^\dagger \end{bmatrix} \begin{bmatrix} MG_1 & MG_2 \\ NG_3 & NG_4 \end{bmatrix} P$$

$$= P^{-1} \begin{bmatrix} F_1 MG_1 + F_2 NG_3 & F_1 MG_2 + F_2 NG_4 \\ F_3 MG_1 + F_4 NG_3 & F_3 MG_2 + F_4 NG_4 \end{bmatrix} P.$$

We obtain the following system

$$F_1 MG_1 + F_2 NG_3 = M^{-1},$$

$$F_1 MG_2 + F_2 NG_4 = 0,$$

$$F_3 MG_1 + F_4 NG_3 = 0,$$

$$F_3 MG_2 + F_4 NG_4 = 0.$$

Conversely, suppose that the matrices B and C satisfied (14). Then we see that $AA^\dagger B = B$ and $C = CA^\dagger A$. From Theorem 2.1 we have that there
exists a solution $X = CA^\dagger B$ of the equation (1). Now, from the system (15) it follows that $CA^\dagger B = A^d$, so $X = A^d$ is the solution of the equation (1). □

Notice that Theorem 2.4 is a generalization of Theorem 2.3.

Now, we state some interesting results.

Theorem 2.5 Let $A \in C^{n \times n}$, with $\text{ind}(A) = k$ has the form (13), let p, m, n be positive integers and $m, n \geq k$. Then $X = A^d$ is the solution of the equation

$$\text{rank} \begin{bmatrix} A^p & A^n \\ A^m & X \end{bmatrix} = \text{rank}(A^p),$$

if and only if $M^{m+n-p} = M^{-1}$.

Proof. Suppose that $X = A^d$ is the solution of the equation (16). Then $A^d = A^m(A^p)-A^n$. Hence,

$$P^{-1} \begin{bmatrix} M^{-1} & 0 \\ 0 & 0 \end{bmatrix} P =$$

$$P^{-1} \begin{bmatrix} M^m & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} M^{-p} & 0 \\ 0 & (N^p)^{-} \end{bmatrix} \begin{bmatrix} M^n & 0 \\ 0 & 0 \end{bmatrix} P =$$

$$P^{-1} \begin{bmatrix} M^{(m+n-p)} & 0 \\ 0 & 0 \end{bmatrix} P,$$

i.e. $M^{m+n-p} = M^{-1}$.

On the contrary, suppose that $M^{m+n-p} = M^{-1}$. First, we show that there exists a solution X of the equation (16), i.e. that $R(A^n) \subseteq R(A^p)$ and $N(A^p) \subseteq N(A^m)$.

If $y \in R(A^n)$, then there exists x such that $y = A^n x$, i.e.

$$y = P^{-1} \begin{bmatrix} M^n z_1 \\ 0 \end{bmatrix}, \text{ where } P x = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.$$
implying that $y = A^p x'$, where $x' = P^{-1} \begin{bmatrix} M^{(p-n)z_1} \\ 0 \end{bmatrix}$. Hence, $R(A^n) \subseteq R(A^p)$ and analogously $N(A^p) \subseteq N(A^m)$. Using the same computation as in the first part, we obtain that $X = A^d$ is the solution of the equation (16). □

Remark Notice that Theorem 2.5 is also valid if we put $f(n)$ and $g(m)$ instead of n, m, where f, g are arbitrary positive functions.

Corollary 2.3 Let $A \in C^{n \times n}$, with $\text{ind}(A) = k$ has the form (13), let p, m, n be positive integers such that $m, n \geq k$ and $m + n = p - 1$. Then $X = A^d$ is the solution of the equation (16).

Corollary 2.4 Let $A \in C^{n \times n}$, then

$$\text{rank} \begin{bmatrix} A^{(2l+1)} & A^t \\ A^t & A^d \end{bmatrix} = \text{rank} A^{(2l+1)},$$

for arbitrary integer $l \geq \text{ind}(A)$.

Corollary 2.5 Let $A \in C^{n \times n}$ and $\text{ind}(A) = 1$, then

$$\text{rank} \begin{bmatrix} A^3 & A \\ A & A^\# \end{bmatrix} = \text{rank}(A^3).$$

References

