
Some classes of integral circulant graphs either allowing or

not allowing perfect state transfer∗
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Abstract

The existence of perfect state transfer in quantum spin networks based on integral circulant graphs has been
considered recently by Saxena, Severini and Shparlinski. Motivated by the mentioned work, Bašić, Petković and
Stevanović give the simple condition for the characterization of integral circulant graphs allowing the perfect state
transfer in terms of its eigenvalues. They stated that integral circulant graphs with minimal vertices allowing
perfect state transfer, other than unitary Cayley graphs, are ICG8({1, 2}) and ICG8({1, 4}). Moreover, it is also
conjectured that two classes of integral circulant graphs ICGn({1, n/4}) and ICGn({1, n/2}) allow PST where
n ∈ 8N. These conjectures are confirmed in this paper. Moreover, it is shown that there are no integral circulant
graphs allowing perfect state transfer in the class of graphs where the number of vertices is square-free integer.
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1 Introduction

Integral graphs are extensively studied in the literature. Harary and Schwenk first studied integral graphs in the paper
[6]. A graph is called an integral if all eigenvalues are integers. Also there is vast research on the class of circulant
graphs. Graph is called circulant if it is Cayley graph on circulant group, i.e. its adjacency matrix is circulant. These
graphs have important application as a class of interconnection networks in parallel and distributed computing. On
the other side, the first characterization of graphs belonging to both classes of integral and circulant graphs is given
by So in [12]. These graphs are called integral circulant graphs.

Moreover, integral circulant graphs are the generalization of well-known class of unitary Cayley graphs. Various
properties of unitary Cayley graphs were investigated in some recent papers. For example, Klotz and Sander [9]
determined the diameter, clique number, chromatic number and eigenvalues of unitary Cayley graphs. The problem of
longest induced cycle in unitary Cayley graphs is studied in the paper of Fuchs [5] and also in the paper of Berrizbeitia
and Giudici [3]. On the other side, there is almost no research on integral circulant graphs. Some results about clique
number integral circulant graphs with exactly one and two divisors are recently obtained by Bašić and Ilić [1].

In the recent work of Saxena, Severini and Shparlinski it is stated that the integral circulant graphs are potential
candidates for modeling quantum spin networks that might enable the perfect state transfer between antipodal sites
in a network. Discrete quantum networks allowing perfect state transfer are recently considered in the paper [4]. More
results in this topic are given by Bašić, Petković and Stevanović in paper [2]. Simple and general characterization of
the existence of perfect state transfer in integral circulant graphs, in terms of its eigenvalues is given in that paper.

It is proven that integral circulant graphs with odd number of vertices do not allow perfect state transfer. Also, it
is given the characterization of unitary Cayley graphs allowing perfect state transfer.

However, the general problem of characterizing integral circulant graphs having perfect state transfer is still open.
In this paper we give the partial answer to this problem. It is shown that graphs whose number of vertices is square-
free integer, do not allow perfect state transfer. Moreover, we found two general classes of integral circulant graphs
allowing perfect state transfer. These are the first known classes of integral circulant graphs whose all members allow
perfect state transfer.

∗The authors gratefully acknowledge support from the research project 144011 of the Serbian Ministry of Science.
†Corresponding author.
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2 Integral circulant graphs

A circulant graph G(n; S) is graph on vertices Zn = {0, 1, . . . , n − 1} such that each vertex i is adjacent to vertices
i + s for all s ∈ S. A set S is called a symbol of graph G(n; S). Note that the degree of graph G(n; S) is #S. Graph
is integral if all its eigenvalues are integers. Wasin So has characterized integral circulant graphs [12] by the following
theorem

Theorem 1 [12] A circulant graph G(n;S) is integral if and only if

S =
⋃

d∈D

Gn(d),

for some set of divisors D ⊆ Dn. Here Gn(d) = {k : gcd(k, n) = d, 1 ≤ k ≤ n− 1}, and Dn is the set of all divisors
of n less than n.

Therefore an integral circulant graph G(n; S) is defined by its order n and the set of divisors D. Such graphs are
also known as gcd-graphs (see for example [9]). An integral circulant graph with n vertices defined with the set of
divisors D ⊆ Dn will be denoted by ICGn(D). From Theorem 1 we have that the degree of an integral circulant graph
is equal to deg ICGn(D) =

∑
d∈D ϕ(n/d). Here ϕ(n) denotes Euler-phi function [7]. The next theorem concerns the

connectivity of an integral circulant graphs.
The eigenvalues and eigenvectors of ICGn(D) are given by [10]

λj =
∑

s∈S

ωjs
n , vj = [1 ωs

n ω2s
n · · ·ω(n−1)s

n ],

where ωn = ei 2π
n is the n-th root of unity. Denote by c(j, n) the following expression

c(j, n) = µ(tn,j)
ϕ(n)

ϕ(tn,j)
, tn,j =

n

gcd(n, j)
, (1)

where µ is Möbius function. Expression c(j, n) is known as the Ramanujan function [7]. Eigenvalues λj can be
expressed in terms of Ramanujan function as follows ([9], Theorem 16)

λj =
∑

d∈D

c(j, n/d). (2)

Let us observe the following properties of the Ramanujan function. These basic properties will be used in the rest of
the paper.

Proposition 2 For any positive integers n, j and d such that d | n, holds

c(0, n) = ϕ(n), (3)
c(1, n) = µ(n), (4)

c(2, n) =





µ(n), n ∈ 2N+ 1
µ(n/2), n ∈ 4N+ 2

2µ(n/2), n ∈ 4N
(5)

c(n/2, n/d) =
{

ϕ(n/d), d ∈ 2N
−ϕ(n/d), d ∈ 2N+ 1 (6)

Proof. Directly by using relation (1). ¤

3 Perfect state transfer

For a given integral circulant graph ICGn(D) we say that there is a perfect state transfer (PST) between vertices a
and b if there is a positive real number t such that

|〈a|eiAt|b〉| =
∣∣∣∣∣
1
n

n−1∑

l=0

eiλltωl(a−b)
n

∣∣∣∣∣ = 1. (7)

We restate some results proved in our paper [2].

2



Theorem 3 [2] There exists PST in graph ICGn(D) between vertices a and 0 if and only if there are integers p and
q such that gcd(p, q) = 1 and

p

q
(λj+1 − λj) +

a

n
∈ Z, (8)

for all j = 0, . . . , n− 2.

Theorem 4 [2] There is no PST in ICGn(D) if n/d is odd for every d ∈ D. For n even, if there exists PST in
ICGn(D) between vertices a and 0 then a = n/2.

According to the last theorem, PST is possible in ICGn(D) just for even n and between vertices a = n/2 and 0
(i.e. between b and n/2 + b as mentioned in [10]). Therefore, in the rest of the paper we assume that n is even and
a = n/2.

For a given prime number p and integer n ∈ N0, denote by Sp(n) the maximal number α such that pα | n if n ∈ N,
and Sp(0) = +∞ for an arbitrary prime number p.

Lemma 5 [2] There exists PST in ICGn(D), if and only if there exists number m ∈ N0 such that the following holds
for all j = 0, 1, . . . , n− 2

S2(λj+1 − λj) = m. (9)

Next corollary follows directly from Lemma 5.

Corollary 6 Let ICGn(D) has PST. One of the following two statements must hold

1. All eigenvalues λj have the same parity.

2. All eigenvalues λj with odd index j have the same parity and same holds for an even index j (i.e. λj are
alternatively odd and even).

We end this section with the following result concerning unitary Cayley graphs.

Theorem 7 [2] The only unitary Cayley graphs that have PST are K2 and C4.

Therefore in the rest of the paper we assume that set D has at least two divisors, i.e. |D| ≥ 2.

4 PST on integral circulant graphs whose order is an even square-free
integer

Let n is an even square-free integer, i.e. let n = p1p2 · · · pk where pi are distinct primes for i = 1, . . . , k and p1 = 2.
Main result of this section is the following theorem.

Theorem 8 There is no PST in graph ICGn(D) if n is even square-free integer.

First observe that ϕ(n) = ϕ(tn,j)ϕ(n/tn,j), due to the multiplicity of ϕ and the fact that n is square-free integer.
Relation remains true if n is exchanged with n/d for arbitrary d ∈ D. Expressions (1) and (2), for Ramanujan sum
and eigenvalues of ICGn(D) respectively, reduce to

c(j, n) = µ(tn,j)ϕ(n/tn,j) = µ(tn,j)ϕ(gcd(j, n)), λj =
∑

d∈D

µ(tn/d,j)ϕ(gcd(j, n/d)). (10)

Proposition 9 Eigenvalues λ2p and λp have the same parity for arbitrary prime divisor p > 2 of n.

Proof. Observe that

gcd(p, n/d) =
{

p, p - d
1, p | d , gcd(2p, n/d) =





2p, p - d, 2 - d
p, p - d, 2 | d
2, p | d, 2 - d
1, p | d, 2 | d

,

which directly yields to

ϕ(gcd(p, n/d)) = ϕ(gcd(2p, n/d)) =
{

p− 1, p - d
1, p | d .

Now the conclusion follows from (10) using the fact that Moebius function takes values 1 and −1 on square-free
arguments. ¤
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As a direct corollary of Proposition 9 and Corollary 6 holds that if ICGn(D) has PST, all eigenvalues λj have the
same parity. Next we consider two cases depending on the condition that n/2 ∈ D.

Case 1. Let n/2 /∈ D. Then λ0 =
∑

d∈D ϕ(n/d) is even (n/d > 2 for any d ∈ D) and therefore if ICGn(D) has PST,
all eigenvalues λj are even.

Next we establish some properties of integral circulant graphs ICGn(D) whose all eigenvalues are even.

Lemma 10 If all eigenvalues of ICGn(D) are even, then for arbitrary odd divisor j of n holds #{d ∈ D : j | d} ∈ 2N.

Proof. Observe that for arbitrary odd prime divisors of n, pi1 , . . . , pil
and arbitrary d ∈ D holds

ϕ(gcd(pi1 · · · pil
, n/d)) =

∏

pik
-d
(pik

− 1).

Last expression is even except in the case when all pik
divide d. In such case, ϕ(gcd(pi1 · · · pil

, n/d)) = 1. By setting
j = pi1pi2 · · · pil

and using the fact that λj is even we conclude that the number of divisors d ∈ D such that j | d, is
even. In other words, for arbitrary divisor j of n, holds

#{d ∈ D : j | d} ∈ 2N. (11)

¤

The following lemma introduces the pairing between odd and even divisors in D. In other words, it states that d
and 2d are either both in D or both not in D.

Lemma 11 If all eigenvalues λj are even then for every odd d ∈ D holds 2d ∈ D and for every even d ∈ D holds
d/2 ∈ D.

Proof. Suppose that statement of lemma is not true. Let d0 be maximal odd divisor of n such that exactly one of
the numbers d0 and 2d0 does not belong to D. Let us count the divisors d ∈ D such that d0 | d. Suppose that d > 2d0.
If d is odd and d0 | d, then also 2d ∈ D (since d0 is maximal) and d0 | 2d. On the other side, if d ∈ D is even and
d0 | d, then also d0 | d/2 and d/2 ∈ D (since d0 is maximal).

This proves that there are an even number of divisors d ∈ D such that d > 2d0 and d0 | d. There is also one more
divisor in D (d0 or 2d0) which does not satisfy d > 2d0. Therefore total number of divisors d ∈ D such that d0 | d is
odd, which contradicts (11). ¤

Lemma 12 If all eigenvalues of ICGn(D) are even, the following relations hold S2(λ0) > 1, λ2j+1 = 0 for all
j = 0, 1, . . . , n/2− 1 and S2(λk) = 1 for some even k ∈ {0, 1, . . . , n− 1}.

Proof. Note that for odd j holds gcd (j, n/(2d)) = gcd (j, n/d) and µ(tn/(2d),j) = −µ(tn/d,j). Using (10) we obtain
that λj = 0 for j odd. For even j holds 2 gcd (j, n/(2d)) = gcd (j, n/d) and µ(tn/(2d),j) = µ(tn/d,j). Again using (10)
we obtain

λj = 2
∑

d∈D∩2N+1

µ(tn/d,j)ϕ(gcd(j, n/d)),

for even j.
Consider now the new integral circulant graph ICGn1(D1) where n1 = n/2 and D1 = D ∩ 2N + 1. Denote its

eigenvalues by λ′j for j = 0, . . . , n1 − 1. It holds

λ′j =
∑

d∈D1

µ(tn1,j)ϕ(gcd(j, n1/d)) =
∑

d∈D1

µ(t2n1,2j)ϕ(gcd(2j, 2n1/d)) = λ2j/2.

Observe that since n1/2 /∈ D (n1 is odd) holds λ0 ∈ 2N. Let d′max = max D1. Since all divisors from D1 are odd,
Lemma 11 yields that there is at least one odd eigenvalue. Since #{d′ ∈ D1 : d′max | d′} = #{d′max} = 1, according
to the proof of Lemma 10 holds that λ′d′max

is odd. Therefore

S2(λ2d′max
) = S2(λ′d′max

) + 1 = 1, S2(λ0) = S2(λ′0) + 1 > 1.

By taking k = 2d′max we prove both statements in the lemma. ¤

Now we are ready to prove the main theorem in this case.

Theorem 13 If n/2 /∈ D then graph ICGn(D) does not have PST.
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Proof. If ICGn(D) allows PST and λ0 ∈ 2N, all eigenvalues λj must be even for j = 0, 1, . . . , n − 1. Moreover it
must hold S2(λ2j − λ2j−1) = S2(λ2j) = const for all j = 0, 1, . . . , n/2 − 1 (according to the Lemma 5). This is the
contradiction with Lemma 12. ¤

Case 2. Now let n/2 ∈ D. Since λ0 =
∑

d∈D ϕ(n/d) is odd, if there exists PST in ICGn(D) then all eigenvalues λj

must be odd.
Let D1 = D \ {n/2}. Denote by λ′j eigenvalues of an integral circulant graph ICGn(D1). Since

c(j, 2) =
{

1, j ∈ 2N
−1, j ∈ 2N+ 1 ,

there holds

λj =
{

λ′j + 1, j ∈ 2N
λ′j − 1, j ∈ 2N+ 1 . (12)

Theorem 14 There is no PST in ICGn(D) if n/2 ∈ D.

Proof. Graph ICGn(D1) has all even eigenvalues according to (12) and Lemma 12 yields S2(λ′0) > 1, λ′2j+1 = 0 for
all j = 0, 1 . . . , n/2− 1 and S2(λ′k) = 1 for some even k. Then

S2(λ1 − λ0) = S2(λ′1 − λ′0 − 2) = S2(−λ′0 − 2) = 1,

and also
S2(λk − λk−1) = S2(λ′k − λ′k−1 + 2) = S2(λ′k + 2) > 1.

This is contradiction with Lemma 5. ¤

5 Non-unitary integral circulant graph having PST with minimal num-
ber of vertices

Proposition 15 Minimal number of vertices of non-unitary integral circulant graph allowing PST is n = 8.

Proof. Let n be minimal number of vertices such that there exists graph ICGn(D) having PST. We will prove that
n ≥ 8. According to the Theorem 4 holds n 6= 3, 5, 7. From Theorem 8 we have n 6= 6 since it is square-free integer.

Rest we need to prove that for n = 2 and n = 4 there are no non-unitary integral circulant graphs having PST.
For n = 2 there is only one graph ICG2({1}) = K2 which is unitary. For n = 4 it is only ICG4({1, 2}) (since
ICG4({2}) = 2K2). Its eigenvalues are λ0 = 3 and λ1 = λ2 = λ3 = −1 and according to Lemma 5 there is no PST.

For n = 8, graphs ICG8({1, 4}) and ICG8({1, 2}) have PST. Their spectra are {5,−1, 1,−1,−3,−1, 1,−1} and
{6, 0,−2, 0,−2, 0,−2, 0} respectively. Value S2(λj+1−λj) is equal 1 in both cases for every j = 0, 1, . . . , 7 and according
to Lemma 5 there is PST. ¤

Figure 1: Non-unitary integral circulant graphs with minimal number of vertices (ICG8({1, 4}) on the left and
ICG8({1, 2}) on the right) having PST
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6 Two classes of integral circulant graphs which have a PST

Consider the following two classes of integral circulant graph with two divisors: ICGn({1, n/2}) and ICGn({1, n/4}).
These classes are mentioned in [2] as the possible candidates for existence of PST. It is stated that both classes allow
PST if 8 | n. In this section we give the proof of this result.

Recall that these classes are the first complete classes of integral circulant graphs allowing PST.

Theorem 16 Integral circulant graph ICGn({1, n/2}) where S2(n) ≥ 3 has PST.

Proof. Eigenvalues of ICGn({1, n/2}) are given by λj = c(j, n) + c(j, 2). It can be easily proven that

c(j, 2) =
{

1, 2 | j
−1, 2 - j . (13)

Let α = S2(n).
Suppose that S2(j) ≥ α − 1. Since tn,j = n/ gcd(n, j) it yields 4 - tn,j . Write n = 2αm and tn,j = 2βm′ where

m,m′ ∈ 2N+ 1. We have already proven that β ≤ 1. Then holds

c(j, n) = µ(tn,j)
ϕ(2α)ϕ(m)
ϕ(2β)ϕ(m′)

= µ(tn,j)2α−1 ϕ(m)
ϕ(m′)

.

Since α ≥ 3 last equation implies 4 | c(j, n).
Otherwise, if S2(j) < α − 1 then 4 | tn,j . Since tn,j it is not square-free integer there holds µ(tn,j) = c(j, n) = 0

and obviously 4 | c(j, n).
Now from 4 | c(j, n) and (13) we conclude that λj ∈ 4N ± 1 and S2(λj+1 − λj) = 1. According to the Lemma 5

there is PST in ICGn({1, n/2}). ¤

Theorem 17 Integral circulant graph ICGn({1, n/4}) where S2(n) ≥ 3 has PST.

Proof. Eigenvalues of ICGn({1, n/4}) are given by λj = c(j, n) + c(j, 4).
By direct computation we find

t4,j =
4

gcd(4, j)
=





4, 2 - j
2, S2(j) = 1
1, 4 | j

, c(j, 4) =





0, 2 - j
−2, S2(j) = 1

2, 4 | j
. (14)

Let j ∈ 2N + 1. From (14) we have c(j, 4) = 0. Moreover as 8 | tn,j we also have µ(tn,j) = c(j, n) = 0 and thus
λj = 0.

Now let j ∈ 4N+2. Similarly we conclude c(j, 4) = −2 for relation (14) and as 4 | tn,j we have µ(tn,j) = c(j, n) = 0.
Thus in this case, there holds λj = −2 for all 0 ≤ j ≤ n− 1 and S2(j) = 1.

Finally let j ∈ 4N. From (14) we have c(j, 4) = 2. Denote α = S2(n) and γ = S2(j). According to assumptions we
have α ≥ 3 and γ ≥ 2. By the definition of the term tn,j there holds

S2(tn,j) =
{

0, α ≤ γ
α− γ, α > γ

.

Last equation yields that the term ϕ(n)/ϕ(tn,j) is divisible by 2min{α,γ} and therefore 4 | c(j, n) for j ∈ 4N. Since
c(j, 4) = 2 we obtain λj ∈ 4N+ 2.

According to above discussion there holds

S2(λj) =
{

+∞, j ∈ 2N+ 1
1, j ∈ 2N .

Using Lemma 5 we obtain that there is PST in ICGn({1, n/4}) since S2(λj+1 − λj) = 1 for 0 ≤ j ≤ n− 1. ¤
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7 Conclusion

This paper provides the further study on the PST existence problem in integral circulant graphs. It is proven that if n
is square-free integer, there is no integral circulant graph allowing PST. This result is the continuation of the research
performed in [2]. As the corollary, we obtained that integral circulant graphs with minimal vertices allowing PST,
other than unitary Cayley graphs, are ICG8({1, 2}) and ICG8({1, 4}) . Moreover we made a step forward and proved
that two classes of integral circulant graphs ICGn({1, n/4}) and ICGn({1, n/2}) allow PST when n ∈ 8N. This is the
first result in this topic concerning the complete classes of integral circulant graphs allowing PST.

The following question now comes naturally: Are there integral circulant graphs with non square-free number of
vertices allowing PST, such that n /∈ 8N? In particular, are there any such graphs when set of divisor D contains
exactly two elements. To illustrate these questions we can compute the eigenvalues of graphs ICG12({1, 6}) and
ICG12({1, 3}) and conclude that they do not allow PST. Therefore, condition S2(n) ≥ 3 in Theorem 16 and Theorem
17 cannot be weakened. On the other side, graphs ICG12({1, 2, 4, 6}) and ICG12({1, 2, 3, 4}) allow PST. Notice that
integral circulant graphs ICGn(D) where 9 ≤ n ≤ 11 do not allow PST since n is odd or square-free number.

Last example also suggests the following reverse question: For which number n there exists integral circulant graph
ICGn(D) allowing PST where |D| = 2? And in addition, what is the least number of divisors in D for an integral
circulant graph allowing PST with a given number of vertices n?

All these questions are the special case of the general problem: Characterize all integral circulant graphs ICGn{D}
allowing PST according to number of vertices n with the least number of divisors in D. Since there are different
complete classes of integral circulant graphs, either allowing or not allowing PST, it follows that the mentioned
characterization problem is very hard in general case. We leave this for the further study.

Acknowledgement: The authors wish to thank professor Dragan Stevanović for useful discussions on this topic.

References
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