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Abstract

Starting from the Strassen method for rapid matrix multiplication
and inversion as well as from the recursive Cholesky factorization algo-
rithm, we introduced a completely block recursive algorithm for general-
ized Cholesky factorization of a given symmetric, positive semi-definite
matrix A∈Rn×n. We used the Strassen method for matrix inversion to-
gether with the recursive generalized Cholesky factorization method, and
established an algorithm for computing generalized {2, 3} and {2, 4} in-
verses. Introduced algorithms are not harder than the matrix-matrix mul-
tiplication.
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1 Introduction

The set of all m× n real matrices of rank r is denoted by Rm×n
r . By A(k1,...,kl)

we denote the main diagonal minor of n × n matrix A corresponding to rows
and columns indexed by the indices 1 ≤ k1 < k2 < · · · < kl ≤ n.

For any matrix A ∈ Rm×n consider the following equations in G:

(1) AGA=A, (2) GAG=G, (3) (AG)T =AG, (4) (GA)T =GA

where the superscript T denotes transpose matrix.
For a sequence S of elements from the set {1, 2, 3, 4}, the set of matrices

obeying the equations represented in S is denoted by A{S}. A matrix from
A{S} is called an S-inverse of A and denoted by A(S). Subsequently, the Moore-
Penrose inverse G = A† of A is unique and satisfies the set of the equations
(1)–(4).
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The sets of {2, 3}, {2, 4} inverses of rank s, 0 < s < r = rank(A) is denoted
by A{2, 3}s and A{2, 4}s, as in [4], and defined in the following way:

A{2, 3}s = {X| XAX = X, (AX)∗ = AX, rank(X) = s},
A{2, 4}s = {X| XAX = X, (XA)∗ = XA, rank(X) = s}.

Our starting motivation in the present paper is the following Theorem 28.8
from [7]: matrix inversion is no harder than matrix multiplication.
Theorem is stated under the assumptions that we can multiply two n × n real
matrices in time mul(n) = Ω(n2), where mul(n) satisfies the following two regu-
larity conditions: mul(n+k) = O(mul(n)) for any k in the range 0 ≤ k ≤ n and
mul(n/2) ≤ c ·mul(n) for some constant c < 1. Then the ordinary inverse of any
real nonsingular n× n matrix can be computed in time O(mul(n)). Definitions
of Θ(f(n)), Ω(f(n)) and O(f(n)) can be found, for example, in [7].

Let A, B be n×n real or complex matrices. The number of scalar operations
required for computing the matrix product C =AB by the ordinary method is
2n3−n2 =O(n3) (n3 multiplications and n3−n2 additions). In the paper [15], V.
Strassen introduced an algorithm for matrix multiplication which complexity is
O(nlog2 7) ≈ n2.807 (less than Θ(n3)). There are other algorithms for computing
the product C = AB in time below Θ(n3). Currently the best one is due to
Coppersmith and Winograd [6] and it works in time O(n2.376).

Strassen in [15] introduced the algorithm for finding the inverse of given
n × n matrix A with the same complexity as the matrix multiplication. This
algorithm is based on the block decomposition of the matrix A and analoguous
decomposition of its ordinary inverse.

Lemma 1.1. [15] If A is given n× n matrix partitioned in the following way

A =
[
A11 A12

A21 A22

]
, A11 ∈ Rk×k (1.1)

and both A and A11 are regular, then the inverse matrix X = A−1 can be
represented in well known form of the block matrix inversion [3]:

X =
[
X11 X12

X21 X22

]
=

[
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
, (1.2)

where S = A22 −A21A
−1
11 A12 = (A/A11) is the Schur complement of A11 in the

matrix A.
The number of matrix multiplications required in (1.2) to compute blocks

X11, X12, X21 and X22 in the block form (1.2) can be decreased below Θ(n3)
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using the temporary matrices R1, . . . , R7 and the following relations [15]:

1. R1 = A−1
11

2. R2 = A21R1

3. R3 = R1A12

4. R4 = A21R3

5. R5 = R4 −A22

6. R6 = R−1
5

7. X12 = R3R6

8. X21 = R6R2

9. R7 = R3X21

10. X11 = R1 −R7

11. X22 = −R6.

(1.3)

Let us notice that the matrix R5 in the relations (1.3) is equal to the minus
Schur complement of A11 in the matrix A, i.e. R5 = −(A/A11).

Formulas (1.2) and (1.3) are applicable if both A11 and the Schur comple-
ment S = (A/A11) are invertible.

Our main intention in the present paper is development of an algorithm
for rapid computation of {2, 3} and {2, 4} generalized inverses, with
complexity which is not greater than the matrix multiplication com-
plexity.

Representations of {2, 3} and {2, 4} inverses are established in [14] and they
are based on the generalized Cholesky decomposition defined in [9] and the usual
matrix inversion. Therefore, we are caused to use Strassen algorithm for ma-
trix inversion and develop algorithm which computes the generalized Cholesky
factorization in the matrix multiplication complexity.

In order to accomplish our idea, we organized the paper as in the following.

In the second section we state a recursive algorithm for rapid matrix inver-
sion, not harder than the matrix multiplication.

A new Strassen-type full recursive algorithm for simultaneous fast computa-
tion of the Cholesky factorization matrix U satisfying A = UT U , and its inverse
Y is introduced in Section 3. The algorithm is applicable to symmetric positive-
definite matrix. A generalization of this algorithm to positive semi-definite
matrices gives analogous recursive algorithm for the generalized Cholesky de-
composition from [9]. Then the matrix Y becomes {1, 2, 3} inverse of U .

In the fourth section we combine representations from [14] with effective
generalized Cholesky decomposition, and developed algorithms for computing
the Moore-Penrose and various classes of {2, 3} and {2, 4} generalized inverses.
These algorithms are not harder than the matrix multiplication.

Algorithms are implemented in the package MATHEMATICA and numerical
examples are presented.

2 Strassen matrix inversion method

Formulas (1.3) can be used for recursive computation of the matrix inverse
A−1. Relations 1. and 6. in (1.3) use matrix inverses of matrices with smaller
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dimensions (k × k and (n − k) × (n − k) respectively). By applying the same
formulas recursively on these submatrices, it is obtained the recursive method
for matrix inversion. Recursion can be continued down to the case of 1 × 1
matrices.

The original Strassen matrix inversion algorithm is based on the following
two principles:

P1. in steps 1. and 6. recursively compute the inverses of smaller dimension
matrices, and recursion is continued down to the level 1× 1;

P2. use the Strassen’s matrix-matrix multiplication method to perform all the
matrix multiplications (steps 2, 3, 4, 7, 8 and 9).

Now we will state a Strassen-type algorithm for matrix inversion, based on
the principle P1. Any correct method for matrix multiplication can be used.
The matrix multiplication method used determines complexity of the algorithm.

Algorithm 2.1. (Strassen-based matrix inversion)

Input: Regular n× n matrix A which all main diagonal minors are regular.

Step 1. If n = 1 then return X = [a−1
11 ]. Else decompose matrix A with k = bn

2 c
as in (1.1) and continue.

Step 2. Apply formulas (1.3), where the inverses are computed fully recursively
according to the principle P1.

Step 3. Return the inverse matrix X = A−1 as in (1.2).

Denote by inv(n) the complexity of Algorithm 2.1. Also denote by add(n)
the complexity of the matrix addition on n×n matrices and by mul(m,n, k) the
complexity of multiplying m × n matrix with n × k matrix, and let mul(n) =
mul(n, n, n). Moreover denote by invs(n), adds(n) and muls(m,n, k) corre-
sponding storage complexities of Algorithm 2.1, matrix addition on n × n ma-
trices and matrix multiplication of m× n with n× k matrix, and let muls(n) =
muls(n, n, n).

Remark 2.1. If any algorithm for matrix-matrix multiplication with complex-
ity O(n2+ε) is used, then Algorithm 2.1 also works with complexity O(n2+ε),
0 < ε < 1. Especially, if the Strassen’s matrix-matrix multiplication algorithm
and full recursion is applied, Algorithm 2.1 requires

6
5
nlog2 7 − 1

5
n ≈ n2.807

multiplications [2, 12, 15]. Otherwise if the usual matrix-matrix multiplication
algorithm with ordinary time complexity O(n3) is used, then complexity of
Algorithm 2.1 is O(n3).

Proposition 2.1. Storage complexity of Algorithm 2.1 is Θ(n2).
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Proof. Note that the storage complexity of the usual matrix-matrix multiplica-
tion algorithm, as well as known methods for matrix multiplication with com-
plexity mul(n) = O(n2+ε) is equal to Θ(n2).

Therefore, the storage complexity of Algorithm 2.1 is determined by the
following recurrence formula

invs(n) = invs(n/2) + muls(n/2) + Θ(n2) = invs(n/2) + Θ(n2).

Its solution is determined by the case 3 of the Master theorem (see for example
[7]) and it is equal to invs(n) = Θ(n2).

3 Recursive Cholesky factorization

It is well known that for a symmetric positive definite matrix A there exists
an upper triangular matrix U such that holds A = UT U . This is well-known
Cholesky factorization of matrix A. P. Courrieu in the paper [9] introduced
the generalization of the usual Cholesky factorization. This generalization is
applicable to both singular and regular matrices. The following theorem, proved
in [9], guarantees its existence:

Theorem 3.1. [9] Let A be a symmetric, possibly singular, positive semi-
definite matrix of the order n × n. Then there is an upper triangular matrix
U = [uij ] such that UT U = A and uii ≥ 0 for all i = 1, . . . , n. If for an index i
one has uii = 0, then uij = 0 for all j = 1, . . . , n. Moreover, the matrix U with
these properties is unique.

In this section we consider a recursive algorithm for computing the Cholesky
factorization of both singular and regular matrices in complete block form which
complexity is Θ(mul(n)).

Consider again block representation (1.1) of the matrix A and an appropriate
block decomposition of the matrix U :

A =
[
A11 A12

AT
12 A22

]
, U =

[
U11 U12

0 U22

]
, U11, A11 ∈ Rk×k. (3.1)

Equation A = UT U is equivalent with the following system of matrix equations:

1. A11 = UT
11U11

2. A12 = UT
11U12

3. A22 = UT
12U12 + UT

22U22.

(3.2)

3.1 Regular case

Suppose first that symmetric matrix A is invertible and positive definite. Gus-
tavson and Jonsson [11] presented a Cholesky factorization routine by combining
recursion and blocking. Other results concerning recursive algorithms in linear
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algebra can be found for example in [10, 11, 16]. In the recursive algorithm
from [11], the Cholesky factorization of a positive definite symmetric n×n ma-
trix A is initiated by a recursive Cholesky factorization of the upper left square
matrix A11 of the order n1 = bn/2c. Then the upper right matrix A12 can be
transformed into U12 by the multiple solving of n2 = dn/2e triangular systems
of equations (each of size n1 = bn/2c) according to the second equation in (3.2).
Finally, the matrix Ã22 = A22 − UT

12U12 is recursively factored.
The complexity of solving n× n linear triangular system by Gaussian elim-

ination is O(n2). Therefore total complexity required for solving n/2 trian-
gular n × n systems is O(n3). For this purpose we propose an alternative
method to generate block U12. From the second equation in (3.2) we have that
U12 = (UT

11)
−1A12. The regularity of matrix U11 (also UT

11) comes from the
positive-definity of matrix A. It is clear that the multiple solving of n2 =dn/2e
triangular systems of equations, contained in the second equation in (3.2), is
equivalent with computation of the matrix expression (UT

11)
−1A12. Due to this

rationale, we propose an algorithm for solving (3.2) which is based on the com-
plete recursion and computes simultaneously both the matrix U and its inverse
matrix Y . Moreover, this approach will be useful in computation of the gener-
alized Cholesky factorization.

Consider the same block decomposition of the matrix Y = U−1 as for the
matrix U . We have that the following block matrix equation is satisfied

[
U11 U12

0 U22

] [
Y11 Y12

0 Y22

]
=

[
U11Y11 U11Y12 + U12Y22

0 U22Y22

]
=

[
Ik 0
0 In−k

]
, (3.3)

which is equivalent to the following set of equations:

Y11 = U−1
11 , Y22 = U−1

22 , Y12 = −Y11U12Y22. (3.4)

Combining relations (3.2) and (3.4), we can recursively compute both the
Cholesky factorization matrix U satisfying A = UT U and its inverse Y = U−1.

Algorithm 3.1. (Full recursive Cholesky factorization)

Input: Regular, symmetric, positive definite n× n matrix A.

Step 1. If n = 1 then return U = [
√

a11], Y =
[√

a−1
11

]
. Else decompose

matrix A as in (3.1) with k = bn
2 c and continue.

Step 2. Compute recursively the Cholesky factorization matrix U11 and its in-
verse Y11 using the same algorithm for the input matrix A11.

Step 3. Find U12 = Y T
11A12, T1 = UT

12U12 and T2 = A22 − T1.

Step 4. Compute recursively the Cholesky factorization matrix U22 and its in-
verse Y22 using the same algorithm for the input matrix T2.

Step 5. Find T3 = −Y11U12, Y12 = T3Y22.
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Step 6. Return U =
[
U11 U12

0 U22

]
and Y =

[
Y11 Y12

0 Y22

]
.

Correctness of Algorithm 3.1 can be easily verified:

Proposition 3.1. The output matrices U and Y from Algorithm 3.1 satisfy
A = UT U and Y = U−1.

Let us compute the complexity of Algorithm 3.1 and its storage complexity
(denoted by Chol(n) and Chols(n), respectively). The next theorem states that
by using Strassen matrix multiplication method (or any matrix multiplication
method with complexityO(n2+ε) where 0<ε<1), we obtain complexity Chol(n)
which is less than the complexity of the pivoting method (O(n3)).

Theorem 3.2. Under the assumption mul(n) = Θ(n2+ε), where 0 < ε < 1, the
complexity of Algorithm 3.1 is equal to

Chol(n) = Θ(mul(n)) = Θ(n2+ε). (3.5)

Moreover, its storage complexity Chols(n) is equal to Chols(n) = Θ(n2).

Proof. If we choose k = bn
2 c, from relations (1.3) we have the following expres-

sion for Chol(n), where l = dn
2 e:

Chol(n) =





1, n = 1
Chol(k) + Chol(l)+
mul(k, k, l) + mul(l, k, l) + mul(k, k, l) + mul(k, l, l)

+add(l), n > 1.

Assume now that n is an exact power of 2. Then since k = l = n/2 and
add(n)=O(n2)<mul(n), for n > 1 we have

Chol(n) = Chol(n/2) + Chol(n/2) + 4 ·mul(n/2)
= 2Chol(n/2) + Θ(mul(n)).

(3.6)

Since mul(n) = Θ(n2+ε), 0 < ε < 1, it is not difficult to verify inequality
2 ·mul(n/2) < c ·mul(n), for some constant 1 > c > 1/2 and sufficiently large n.
Therefore, by applying case 3 of the Master theorem, we obtain the solution of
the recurrence relation (3.6) in the form Chol(n) = Θ(mul(n)) and prove (3.5).

Otherwise let n is not an exact power of 2. If UT U = A holds, for some q
such that n + q is the least exact power of 2 we have

[
A 0
0 Iq

]
=

[
U 0
0 Iq

]T [
U 0
0 Iq

]
. (3.7)

Thus we enlarge the matrix A to a size that is the closest power of 2 with
respect to n and obtain the desired complexity Chol(n) = Θ(n2+ε) from the
complexity Θ(mul(n + q)) of enlarged problem. It is not difficult to verify that
holds mul(n+q) = O(mul(n)) since mul(n) = Θ(n2+ε). This relation guarantees
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that enlargement does not changes the running time Chol(n + q) for more than
a constant factor with respect to Chol(n).

Now consider the storage complexity. When n is exact power of 2, it satisfies
the recurrence relation

Chols(n) = Chols(n/2) + muls(n/2) + Θ(n2) = Chols(n/2) + Θ(n2).

Similarly to the previous case, by applying case 3 of the Master theorem we
can conclude that Chols(n) = Θ(n2). Otherwise, if n is not exact power of
2, we have to enlarge matrices A and U as in (3.7) and obtain Chols(n) =
Chols(n + q) = Θ((n + q)2) = Θ(n2). This completes the proof.

3.2 Singular case

Now we will extend Algorithm 3.1 in the case when input n × n matrix A
is singular or positive semi-definite. The only one point where Algorithm 3.1
might crash is Step 1 when n = 1 and a11 = 0. We will modify this step by
using U = Y = [0] in the case n = 1 and a11 = 0. Generalization of Step 1 in
Algorithm 3.1 we denote by Step 1’.

Algorithm supervened after the replacement of Step 1 by Step 1’ we denote
by Algorithm 3.1’. The input matrix of Algorithm 3.1’ is symmetric positive
definite or positive semi-definite n× n matrix A.

Algorithm 3.1’ (Full recursive generalized Cholesky factorization)

Input: Symmetric positive semi-definite n× n matrix A.

Step 1’. If n = 1 then return

U =
{

[
√

a11], a11 6= 0
[0] , a11 = 0,

Y =





[√
a−1
11

]
, a11 6= 0

[0] , a11 = 0.

In the case n > 1 decompose matrix A as in (3.1) with k = bn
2 c and

continue.

Other steps are the same as in Algorithm 3.1.
Note that complexity and storage complexity of Algorithm 3.1’ are the same

as for the Algorithm 3.1.
Algorithm 3.1’ will compute matrix U of the generalized Cholesky decom-

position defined in [9]. Also, output matrix Y is {1, 2, 3} inverse for U . This is
proved by the following theorem:

Theorem 3.3. Consider a positive semi-definite (possibly singular) matrix A ∈
Rn×n and output matrices U = [uij ]1≤i,j≤n and Y = [yij ]1≤i,j≤n from Algorithm
3.1’. Then the matrix U is generalized Cholesky decomposition matrix of the
matrix A from Theorem 3.1 ([9]). If uii = 0 for some i = 1, . . . , n then uij =
yji = 0 for every j = 1, . . . , n. Moreover the output matrix Y is {1, 2, 3} inverse
of the matrix U , matrix UY is diagonal and all its entries on main diagonal are
equal to 0 or 1.
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Proof. First observe that every main diagonal minor A(S), S ⊂{1, . . . , n} of
the positive-semidefinite matrix A is also positive-semidefinite. Denote with
SC = {1, . . . , n} \S the complement set of indices S. Let x′ ∈ R|S| be arbitrary
vector of length |S| which is equal to the cardinality of the set S. Then by
setting x(S) = x′ and x(SC) = 0 we obtain 0 ≤ xT Ax = x′T A(S)x

′. This proves
that A(S) is positive semi-definite.

Now we will prove the theorem by using mathematical induction.

For matrices of type 1× 1, it trivially holds from Step 1’.

Assuming that the statement holds for every positive semi-definite matrix
with lower dimensions, we prove the inductive step.

To verify A = UT U it is sufficient to prove three equations in (3.2).

Since A is positive semi-definite, according to the Theorem 3.1 there exists a
matrix U ′ such that U ′T U ′=A . Let us partition the matrix U ′ in the same way

as matrix U in relation (3.1): U ′ =
[
U ′

11 U ′
12

0 U ′
22

]
. Then the matrix U ′ satisfies

equations in (3.2):
1. A11 = U ′T

11 U ′
11

2. A12 = U ′T
11 U ′

12

3. A22 = U ′T
12 U ′

12 + U ′T
22 U ′

22.

(3.8)

In Step 2 of Algorithm 3.1 it is recursively applied to the matrix A11. Since it
is already proven that A11 is positive semi-definite matrix, inductive hypothesis
yields that theorem holds for A11. Hence by uniqueness (Theorem 3.1) of the
matrix U ′

11 (for A11) we conclude that U ′
11 = U11. This confirms the first

equation in (3.2). From the second equation in (3.8) we have that U ′T
11 U ′

12 =
UT

11U
′
12 = A12. Therefore the matrix equation UT

11X = A12 has a solution. From
Theorem 1.2.5 [17] yields that UT

11(U
(1)
11 )T A12 = A12 is satisfied for arbitrary {1}

inverse of the matrix U11. By the inductive hypothesis holds Y11 ∈ U11{1} and
therefore it is satisfied

UT
11Y

T
11A12 = A12. (3.9)

According to (3.9) and Step 3 of Algorithm 3.1’, we obtain

A12 = UT
11Y

T
11A12 = UT

11U12,

which is the second equation in (3.2).

To prove the last equation in (3.2) we only need to show that A22 −UT
12U12

is positive semi-definite matrix. Consider arbitrary vector y ∈ Rn−k×n−k. Let

x1 = −Y11Y
T
11A12y, x2 = y and x =

[
x1

x2

]
. From the positive-semidefinitness of

matrix A and A11 = UT
11U11 we have

0 ≤ xT Ax = xT
1 A11x1 + 2xT

1 A12x2 + xT
2 A22x2

= yT AT
12Y11Y

T
11U

T
11U11Y11Y

T
11A12y − 2yT AT

12Y11Y
T
11A12y + yT A22y.



10 M.D. Petković, P.S. Stanimirović

According to the inductive hypothesis, we have Y11 ∈ U11{1, 2, 3} and

U11Y11Y
T
11 = (U11Y11)T Y T

11 = (Y11U11Y11)T = Y T
11. (3.10)

Therefore, one can verify the following:

0 ≤ xT Ax = yT A22y − yT AT
12Y11Y

T
11A12y

= yT (A22 − UT
12U12)y.

(3.11)

Since yT (A22 − UT
12U12)y ≥ 0 holds for arbitrary vector y ∈ Rn−k×n−k, the

matrix A22−UT
12U12 is positive semi-definite. From the inductive hypothesis we

have that UT
22U22 = A22 − UT

12U12. Therefore we proved that U satisfies (3.2),
i.e. that holds UT U = A.

Next we will prove that if uii = 0 for some i = 1, . . . , n then uij = yji = 0
for each j = 1, . . . , n. In other words we have to prove that if i-th diagonal
element of U is equal to 0, then i-th row of U as well as i-th column of Y are
zero. Suppose that uii = 0. Denote k = bn/2c.

If i > k then element uii is the diagonal element of the matrix U22. According
to the inductive hypothesis, the i− k-th row of matrix U22 and i− k-th column
of matrix Y22 is zero. Block decomposition (3.1) yields that i-th row of U is
zero. In order to prove that i-th column of Y is also zero, we have to prove that
i− k-th column of Y12 is zero. This holds from Y12 = T3Y22 = −Y11U12Y22.

Otherwise, if i ≤ k then uii is diagonal element of U11. From the inductive
hypothesis, i-th row of U11 and i-th column of Y11 are zero. Using that U12 =
Y T

11A12 we can proceed as in the previous case.
Therefore we have proven that matrix U is the generalized Cholesky decom-

position from Theorem 3.1.
Rest we need to prove that Y is {1, 2, 3} inverse of the matrix U . From

theorem 1 in [5] it directly holds that Y is {2} inverse of U . We can prove that
Y is also {1} inverse of U by direct verification of the equation UY U = U . It is
easy to verify

UY U =
[
U11Y11U11 U11Y11U12 + U11Y12U22 + U12Y22U22

U22Y22U22

]
. (3.12)

From the inductive hypothesis we have U11Y11U11 = U11 and U22Y22U22 = U22.
From Step 3 of Algorithm 3.1’ and (3.10) we have that

U11Y11U12 = U11Y11Y
T
11A12

= Y T
11A12

= U12.

(3.13)

From (3.13) and definition of Y12 in Step 5 of Algorithm 3.1’ we have

U11Y11U12 + U11Y12U22 + U12Y22U22

= U12 − U11Y11U12Y22U22 + U12Y22U22

= U12 − U12Y22U22 + U12Y22U22

= U12.

(3.14)
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Therefore, we prove that Y ∈ U{1}.
To prove that Y ∈ U{3}, we verify that the matrix UY is symmetric. It is

not difficult to verify

UY =
[
U11Y11 U11Y12 + U12Y22

0 U22Y22

]
. (3.15)

Again by definition of blocks Y12, U12 and Y22 in Algorithm 3.1’ we have

U11Y12 + U12Y22 = −U11Y11U12Y22 + Y T
11A12Y22

= −U11Y11Y
T
11A12Y22 + Y T

11A12Y22 = 0.
(3.16)

To prove (3.16), once more we used the property U11Y11Y
T
11 = Y T

11. Therefore,
the statement Y ∈ U{1, 2, 3} is proved. From (3.15), (3.16) and the inductive
hypothesis we have that the matrix UY is diagonal with all main diagonal entries
equal to 0 or 1.

4 Rapid computation of generalized inverses

In this section we will show how results obtained in the previous sections can be
used in computing the Moore-Penrose and various classes of {2, 3} and {2, 4}
generalized inverses. The main result will be an algorithm which computes
the Moore-Penrose and {2, 3} and {2, 4} inverses in time Θ(mul(n)), under
the assumption that the matrix inversion is of cost no more than the matrix
multiplication.

Basis for our method are the results presented in [8] and [14]. P. Courrieu
in [8] used the Cholesky decomposition of the matrix AT A for computing the
Moore-Penrose inverse A†.

Lemma 4.1. [8] Let A be given m×n real matrix, and ST S generalized Cholesky
decomposition of the matrix AT A. If the matrix LT is obtained from S by drop-
ping zero rows, the Moore-Penrose inverse of A satisfies the following relation

A† = L(LT L)−1(LT L)−1LT AT . (4.1)

By combining the generalized Cholesky decomposition method (Algorithm
3.1’) and full recursive inversion method (Algorithm 2.1) we can compute the
Moore-Penrose inverse in time Θ(mul(n)) using the relation (4.1).

Algorithm 4.1. (Computing the Moore-Penrose inverse in matrix multiplica-
tion complexity, based on the generalized Cholesky factorization)

Input: Matrix A ∈ Rm×n
r .

Step 1. Form the matrix A′ = AT A.

Step 2. Find the generalized Cholesky factorization A′ = UT U of matrix A′

using Algorithm 3.1’.
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Step 3. Obtain the matrix LT by dropping zero rows from matrix U . Form the
matrix T = LT L.

Step 4. Find the inverse M = T−1 using Algorithm 2.1.

Step 5. Return the Moore-Penrose inverse of A, defined by the formula

A† = LM2LT AT .

In order to prove correctness of Algorithm 4.1, it is necessary that all main
diagonal minors of matrix T , defined in Step 3, are regular. We will prove this
fact.

Theorem 4.1. Matrix T = LT L defined in Step 3 of Algorithm 4.1 is regular,
symmetric, positive definite and all main diagonal minors of T are regular.

Proof. We have that A′ = AT A ∈ Rn×n is symmetric and positive semi-definite.
Using the results from [8] one can conclude that T is regular, symmetric and
positive definite. To show that application of Algorithm 2.1 is possible in Step
4. of Algorithm 4.1, it is sufficient to prove that all main diagonal minors of T
are regular. Let T(S) be a principial minor of T defined by the corresponding
index set S ⊂ {1, . . . , n}. For arbitrary non-zero vector x ∈ R|S| the following
is valid:

xT T(S)x = xT LT
(S)L(S)x = (L(S)x)T L(S)x.

Since L(S) is of full column rank, we have L(S)x 6=0, which implies x′T T(S)x
′>0.

Therefore, T(S) is of full column and full row rank, i.e. invertible.

All steps of Algorithm 4.1 work in time Θ(mul(n)), so this is also the com-
plexity of whole Algorithm 4.1.

In the paper [14] (Theorem 2.1), Courrieu’s method is generalized for com-
puting various classes of generalized inverses including {1, 2, 3}, {1, 2, 4}, {2, 3}s

and {2, 4}s inverses. We use this result for constant real matrices.
Using representations of generalized inverses from [14] together with the

results from the previous section, we obtain the method for computing all men-
tioned classes of generalized inverses in time Θ(mul(n)). Also the corresponding
storage complexity is again Θ(n2) if holds muls(n) = Θ(n2). These are actu-
ally two analogous methods (other one is obtained by exchanging expressions
in brackets)

Algorithm 4.2. (Computing generalized inverses in the matrix multiplication
time, based on the generalized Cholesky factorization)

Input: Matrix A ∈ Rm×n
r and the matrix R ∈ Rm×n1

s (respectively T ∈ Rm1×n
s ),

where 0 < s ≤ r and m1, n1 ≥ s.

Step 1. Form the matrix P = (ATT )(ATT )T or Q = (RT A)T (RT A).

Step 2. Find the generalized Cholesky factorization P = UT U or Q = UT U ,
by applying Algorithm 3.1’.
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Step 3. Obtain the matrix LT by dropping zero rows from matrix U . Form the
matrix T = LT L.

Step 4. Find the inverse M = T−1 using Algorithm 2.1.

Step 5. Return the matrix XM = LM2LT AT RRT or XN = TT TAT LM2LT .

Next theorem verifies the correctness of Algorithm 4.2.

Theorem 4.2. Consider the arbitrary matrix A ∈ Rm×n
r . Let 0 < s ≤ r

be any chosen integer and assume that m1, n1 are positive integers satisfying
m1, n1 ≥ s. Then Algorithm 4.2 satisfies the following statements:

(a) In the case s < r, XM ∈ A{2, 4}s.

(b) In the case s < r, XN ∈ A{2, 3}s.

(c) In the case s = r, XM ∈ A{1, 2, 4}.

(d) In the case s = r, XN ∈ A{1, 2, 3}.

(e) When R = A (T = A) inverse XM obtained in case (c) (XN obtained in
case (d)) reduces to A†.

Moreover Algorithm 4.2 works in time Θ(mul(n)) if we use the Strassen
method for the matrix-matrix multiplication and the matrix inversion. The stor-
age complexity of Algorithm 4.2 is Θ(n2).

Proof. Matrices P and Q are symmetric and positive semi-definite. Therefore,
Step 2 of Algorithm 4.2 is correct. Applying the same principle as in the proof
of Theorem 4.1, one can verify that LT L and all its main diagonal minors are
regular. This means that Step 4 of Algorithm 4.2 is correct. Then the statements
(a)–(e) follows from Theorem 2.1 in [14].

Applying inv(n) = Θ(n2+ε) and Theorem 3.2, it is clear that all steps in
Algorithm 4.2 are of the complexity Θ(mul(n)). Therefore, we can compute any
{2, 3} and {2, 4} generalized inverse in time Θ(mul(n)).

Since invs(n) = Θ(n2) and Chols(n) = Θ(n2) we can easily conclude that
storage complexity of Algorithm 4.2 is Θ(n2).

5 Numerical experience

Algorithms introduced in previous sections are implemented in the symbolic
programming package MATHEMATICA (version 6.0). Source code is included in
the appendix. Matrix multiplication in MATHEMATICA works with complexity
O(n3), so that this is also the working time of our algorithms implementation.
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Example 5.1. We will demonstrate how algorithms 4.1 and 4.2 work on the
matrix

A =




8 8 1 1
10 10 2 2
11 11 3 3
12 12 4 4


 .

By applying Algorithm 3.1’ on the matrix AT A we obtain the following gener-
alized Cholesky decomposition for AT A:

AT A = UT U where U =




√
429

√
429 109√

429
109√
429

0 0 0 0

0 0
√

989
429

√
989
429

0 0 0 0


 .

The generalized inverse Y of matrix U returned by Algorithm 3.1’ is equal to

Y =




1√
429

0 − 109√
424281

0
0 0 0 0

0 0
√

429
989 0

0 0 0 0




and satisfies the equations (1), (2) and (3) with respect to matrix U . This
agrees with the results contained in Theorem 3.3. By direct verification we have
that matrix UY is equal to diag(1, 0, 1, 0) which also agrees with Theorem 3.3.
Subsequently, main diagonal of UY correspond to the zero rows in U and zero
columns in Y respectively. Equation (4) is not satisfied, but the matrix Y U is
upper triangular with only two non-zero entries above the main diagonal

Y U =




1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0


 .

Also, observe that u22 = u44 = 0. Since the second and fourth row in U are zero
rows (together with the second and fourth column in Y ), this confirms Theorem
3.3.

The next step is obtaining the matrix LT by dropping the zero rows from U
and inverting the matrix LT L using Algorithm 2.1. It holds

L =




√
429 0√
429 0
109√
429

√
989
429

109√
429

√
989
429




.
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Further we obtain matrix M as follows

LT L =




391844
429

218
√

989
429

218
√

989
429

1978
429


 =⇒ M=(LT L)−1=




1
858 − 109

858
√

989

− 109
858

√
989

97961
424281


 .

Now from the last step of Algorithm 4.1 we obtain the following Moore-
Penrose inverse of the matrix A:

A† =




131
1978

41
989

3
1978 − 38

989

131
1978

41
989

3
1978 − 38

989

− 443
1978 − 116

989
44
989

204
989

− 443
1978 − 116

989
44
989

204
989




Example 5.2. For matrices

A =




30 78 54 66 66 42 60
42 89 55 70 82 51 74
78 113 34 55 127 66 98
96 115 80 113 137 108 166


 , rank(A) = 3

R =




52 9 23 40 35 5 37
92 54 72 64 56 30 68
4 18 16 0 0 10 4
22 54 51 8 7 30 19


 , rank(R) = 2

by applying Algorithm 4.2 we obtain the following {2, 4} inverse of A with rank
2:

A
(2,4)
2 =




− 2064786876
231354215041 − 4755131732

694062645123
1424383465

694062645123
5928345641

694062645123

4016182158
231354215041

3180731937
231354215041 − 1034331045

462708430082 − 6217922757
462708430082

2682758156
231354215041

6419265925
694062645123 − 848359916

694062645123 − 5890267708
694062645123

− 2365817440
231354215041 − 1833498584

231354215041
471776128

231354215041
2133596416

231354215041

− 2070090260
231354215041 − 1604311261

231354215041
412804112

231354215041
1866896864

231354215041

2231212310
231354215041

5301219895
694062645123 − 1723885075

1388125290246 − 10363204595
1388125290246

− 1177605336
231354215041 − 2692445825

694062645123
893635321

694062645123
3528049673

694062645123




Example 5.3. Our implementations are tested on several random generated
test examples.
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In the first three tables we compared the performance of our implementa-
tion of Algorithm 3.1’ (function Ch) with the implementation of the generalized
Cholesky decomposition from [9], given in [14] (function Cholesky). Due to
the implementation of matrix-matrix multiplication in MATHEMATICA time com-
plexities of both implementations are O(n3). All presented times are in seconds.
Each table item is average time on 20 different random generated test matri-
ces with the same rank and order. Matrix dimensions are 2k for k = 4, 5, 6, 7
together with the values b2k

√
2c also for k = 4, 5, 6, 7.

n Ch Cholesky[14]
16 0.010 0.
23 0.011 0.005
32 0.018 0.016
45 0.021 0.047
64 0.052 0.120
90 0.078 0.328
128 0.151 0.905
180 1.295 3.562

rankA = n

n Ch Cholesky[14]
16 0.0047 0.0031
23 0.016 0.023
32 0.0256 0.0171
45 0.031 0.047
64 0.042 0.1232
90 0.078 0.328
128 0.1498 0.9207
180 0.265 2.481
256 3.24 10.5428
362 8.83 348.6
512 25.9895 1959.15

n Ch Cholesky[14]
16 0.0 0.0
23 0.003 0.0062
32 0.0094 0.0188
45 0.0094 0.0436
64 0.0378 0.1308
90 0.0346 0.3306
128 0.078 0.9422
180 0.195 2.5895
256 0.5616 7.9872
362 1.17 197.622
512 12.32 983.4

rankA = n/2 rankA = n/10

In the following three tables we compare implementation of Algorithm 4.1
with corresponding MATHEMATICA implementation of Algorithm 2.1 from [14].
These algorithms compute the Moore-Penrose inverse.
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n Alg. 4.1 Alg. 2.1 in [14]
16 0.00775 0.
23 0.016 0.0155
32 0.031 0.01575
45 0.039 0.0505
64 0.05025 0.133
90 0.09725 0.3315
128 0.17125 0.94
180 0.31175 2.62075

rankA = n
n Alg. 4.1 Alg. 2.1 in [14]
16 0. 0.00375
23 0.01575 0.
32 0.01575 0.0115
45 0.02325 0.03525
64 0.043 0.08175
90 0.08975 0.2225
128 0.15225 0.7645
180 0.2925 2.57

n Alg. 4.1 Alg. 2.1 in [14]
16 0.00775 0.
23 0. 0.004
32 0. 0.0155
45 0.00775 0.0115
64 0.0235 0.01575
90 0.043 0.03125
128 0.1015 0.06625
180 0.17175 0.164

rankA = n/2 rankA = n/10

Finally in the last three tables we compare our implementation of Algo-
rithm 4.2 with corresponding implementation of Algorithm 2.1 in [14]. These
algorithms compute {2, 3} and {2, 4} inverses.

n Alg. 4.2 Alg. 2.1 in [14]
16 0.0115 0.008
23 0.0195 0.00775
32 0.02375 0.02325
45 0.03125 0.04675
64 0.05075 0.1365
90 0.09375 0.35125
128 0.17175 0.98675
180 0.328 2.699

rankA = rankR = n

n Alg. 4.2 Alg. 2.1 in [14]
16 0.0115 0.004
23 0.0195 0.008
32 0.02725 0.01575
45 0.03125 0.05475
64 0.0545 0.1405
90 0.0935 0.35475
128 0.16425 0.97875
180 0.30025 2.777

n Alg. 4.2 Alg. 2.1 in [14]
16 0. 0.
23 0.02725 0.01175
32 0.0195 0.02725
45 0.0315 0.0505
64 0.05475 0.14025
90 0.09775 0.38575
128 0.152 1.09975
180 0.28075 2.96

rankA = rankR = n/2 rankA = rankR = n/10
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From the arranged results we can conclude that our implementation has
better working times on almost all examples. Performances of function Ch as
well as implementations of algorithms 4.1 and 4.2 are additionally degraded due
to the slow recursion calls. Therefore we can conclude that the implementations
of algorithms introduced in this paper possess better performances with respect
to corresponding MATHEMATICA implementations of basic method in [9] and
Algorithm 2.1 in [14], even in the case when matrix multiplication runs in O(n3).

For suitable implementation of matrix multiplication which runs in O(n2+ε)
Algorithm 3.1 will also run in the same time and possess better performance.

6 Conclusion

Our main result in the present paper can be formulated as follows: general-
ized inversion is no harder than matrix multiplication. Guided by the
same result for inverting regular matrices (see for example [7]), we tend to use
the Strassen algorithm for fast matrix multiplication and true block recursive
algorithms.

Since algorithms for computing various classes of {2, 3} and {2, 4} inverses
are based on the generalized Cholesky factorization, introduced in [9], it was
necessary to develop rapid algorithms for the usual and generalized Cholesky
factorization, which work in the matrix multiplication time. The starting point
in the achievement of this goal were the factorization routine based on the recur-
sion, introduced in Jonsson and Gustavson [11]. We introduce a new Strassen-
type recursive algorithm for the Cholesky factorization of a given symmetric,
positive definite matrix A ∈ Rn×n. Our algorithm is based on different ap-
proach than in [11], and computes both the Cholesky factorization matrix U
and its inverse Y . We also presented the extension of our algorithm to the set
of positive semi-definite matrices (possibly singular). In the singular case we
generate the matrix U from the generalized Cholesky decomposition A = UT U
and generalized inverse Y ∈ U{1, 2, 3}. By combining these results with known
representations from [8] and [14], we state algorithms which compute the Moore-
Penrose inverse and various classes of {2, 3} and {2, 4} inverses. Using a method
for matrix multiplication from [15] or from [6] and the method for matrix in-
version from [15], we prove that introduced algorithms work in time Θ(mul(n)),
which is the main result of the paper.

Proposed algorithms are implemented in MATHEMATICA and tested on ran-
domly generated test set matrices. Testing results show that our algorithms
have better running times even in the case when the matrix multiplication runs
with complexity O(n3).
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A Implementation details and code in MATHE-
MATICA

Generalized Cholesky factorization, determined in Algorithm 3.1’ is implemented
in the following MATHEMATICA function.

Ch[AA_] :=

Module[{A, U11, U11inv, U22inv, U12, U22, A11, A12, A21, A22,

Uinv, U, m, n, m1p, n1p, n1},

A = AA;

{m, n} = Dimensions[A];

A = Chop[A, 10^(-6)];

If [Simplify[A] == 0*A, Return[{0*A, 0*A}]];

If [n == 1,

If[A[[1, 1]] < 0, Return[{0*A, 0*A}]];

Return[{{{Sqrt[A[[1, 1]]]}}, {{1/Sqrt[A[[1, 1]]]}}}]

];

n1 = n/2 // Floor;

m1p = n1p = n1;

A11 = A // Take[#, m1p] & // Transpose[Take[Transpose[#], n1p]] &;

A12 = A // Take[#, m1p] & // Transpose[Drop[Transpose[#], n1p]] &;

A21 = A // Drop[#, m1p] & // Transpose[Take[Transpose[#], n1p]] &;

A22 = A // Drop[#, m1p] & // Transpose[Drop[Transpose[#], n1p]] &;

{U11, U11inv} = Ch[A11];

If [Simplify[U11] == 0*U11,

U12 = 0*A12;,

U12 = Transpose[U11inv].A12;

];

{U22, U22inv} = Ch[A22 - Transpose[U12].U12];

U =

Join[Transpose[Join[Transpose[U11], Transpose[U12]]],

Transpose[Join[Transpose[0*A21], Transpose[U22]]]];

Uinv =

Join[Transpose[

Join[Transpose[U11inv], Transpose[-U11inv.U12.U22inv]]],

Transpose[Join[Transpose[0*A21], Transpose[U22inv]]]];

Return[{U, Uinv} // Simplify]

];

Function Adop is auxiliary, and implement Step 3 in Algorithm 4.1 and
Algorithm 4.2.

Adop[a_List] := Module[{m, n, a1, i},

{m, n} = Dimensions[a];

a1 = Transpose[a];

Do[

If [Chop[Norm[Abs[a1[[i]]]], 10^(-6)] == 0,

a1 = Drop[a1, {i}];

];

, {i, Length[a1], 1, -1}

];

Return[Transpose[a1]];

];
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The following functions implement Algorithm 4.1 (function MoorePenroseCh)
and Algorithm 4.2 (functions Inverse1Ch and Inverse2Ch).

MoorePenroseCh[A_] := Module[{U, Uinv, M},

{U, Uinv} = Ch[Transpose[A].A];

U = Adop[Transpose[U]];

M = Inverse[Transpose[U].U // Simplify];

Return[U.M.M.Transpose[U].Transpose[A]];

];

Inverse1Ch[A_, R_] := Module[{A1, U, Uinv, M},

A1 = Transpose[R].A;

{U, Uinv} = Ch[Transpose[A1].A1];

U = Adop[Transpose[U]];

M = Inverse[Transpose[U].U];

Return[U.M.M.Transpose[U].Transpose[A1].Transpose[R] // Simplify];

];

Inverse2Ch[A_, T_] := Module[{A1, U, Uinv, M},

A1 = A.Transpose[T];

{U, Uinv} = Ch[A1.Transpose[A1]];

U = Adop[Transpose[U]];

M = Inverse[Transpose[U].U];

Return[Transpose[T].Transpose[A1].U.M.M.Transpose[U] // Simplify];

];
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