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Abstract

This paper addresses the problem of polar quantization optimization. Particularly,
the aim of this investigation is to find the method for the optimal resolution-constrained
polar quantizer design.

The new iterative algorithm for determination of the optimal decision and represen-
tation magnitude levels and algorithm for optimization of number of phase cells within
each magnitude level, is proposed.

At high rates, the new optimal polar quantizer outperforms the optimal polar com-
pander for 0.2dB, while the more significant gain should be expected at lower rates. In
this paper, in order to enable practical implementation of quantizer model, algorithm
which transforms real values for the optimal numbers of phase cells within magnitude
levels into integer ones is also proposed. Moreover, the approximate closed form of signal
to quantization ratio (SQNR) is derived.

Since circularly symmetric sources and complex presentation of signals arise in numer-
ous applications, it can be concluded that the usage area of the suggested proposal is very
wide (audio coding, image coding, spectral phase coding SPC, synthetic aperture radars
systems SARs, coding of the discrete Fourier transform).

It should be emphasized that in contrast to earlier work, where models have been de-
signed under high-rate assumption, the obtained nonuniform unrestricted polar quantizer
is optimal for all rates.

1 Introduction

Many studies have considered the design of suboptimum vector quantizers that outperform

the cartesian coordinate system quantizers, but with simpler implementation than optimal

vector quantizers. In case of two-dimensional quantization of circularly symmetric densities,
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such implementation is the polar quantizer (Bucklew and Gallagher, 1979a, 1979b; Moo and

Neuhoff, 1998; Pearlman, 1979; Perić and Stefanović, 2002; Swaszek, 1986; Swaszek and Ku,

1986; Swaszek and Thomas, 1983; Wilson, 1980). An intuitive reason for this superiority is that

polar quantizers take advantage of the fact that circularly symmetric sources are characterized

by contours of constant probability density function which are circles in the two-dimensional

space (Bucklew and Gallagher, 1979a, 1979b; Jeong and Gibson, 1993; Pearlman, 1979; Perić

and Stefanović, 2002; Perić et al., 2007; Swaszek and Ku, 1986; Wilson, 1980). Namely, polar

quantizers have diverging angle separations, thus having small regions near the origin where the

probability of vector occurrence is higher and enlarging the regions as they are removed from the

origin. Hence, these schemes require the source symbols be represented in their polar form with

the resulting polar coordinates processed by scalar quantizers (Bucklew and Gallagher, 1979a,

1979b; Moo and Neuhoff, 1998; Pearlman, 1979; Perić and Stefanović, 2002; Swaszek, 1986;

Swaszek and Ku, 1986; Swaszek and Thomas, 1983; Wilson, 1980). According to the type of

utilized scalar quantizers, there are several polar quantizer models. There are models in which

uniform quantizers are applied for the phase as well as magnitude quantization (uniform polar

quantizers) (Moo and Neuhoff, 1998; Perić and Stefanović, 2002; Swaszek, 1985). There are also

models in which reconstruction and decision magnitude levels are not uniformly distributed i.e.

nonuniform polar quantizers (Perić et al., 2007; Swaszek and Ku, 1986; Swaszek and Thomas,

1983). It should be also emphasized that Wilson (Wilson 1980) first defined the unrestricted

polar quantizers, i.e. proposed a different number of level for the phase quantizers due to

satisfaction of the mean square error criteria. Therefore, amplitude and phase can be quantized

separately, which is in this case called strict polar quantization (SPQ) (Pearlman, 1979). They

can be also quantized jointly when the phase quantization is made dependent on the amplitude.

Such quantization is called unrestricted polar quantization (UPQ) (Wilson, 1980). Here can

be noted that solution in (Wilson, 1980) is valid when the number of reconstruction points is

small. The quantizers were derived analytically under high-rate assumptions. In (Swaszek and

Thomas, 1983) the optimal nonuniform SPQ model is designed, while in (Swaszek, 1985) the

idea of UPQ is realized for the large number of reconstruction points. In (Perić and Stefanović,

2002) the UPQ is optimized assuming that each scalar quantizer is a uniform one. In (Swaszek

and Ku, 1986) the optimal UPQ is designed under constraint that scalar compander is used

for magnitude processing. In the same paper, it is also shown that obtained optimal polar

compander asymptotically approaches the optimal polar quantization performance. Opposite

to cited researches, in this paper, during optimal polar quantuzer designing, the only constraint

is a fixed number of reconstruction points (resolution constraint).

To derive the quantizer model which is optimal for all bitrates, we consider nonuniform

UPQ model which does not engage scalar compander for the nonuniform distribution of the

magnitude levels. Particularly, we extend the simple iterative algorithm presented in (Perić et

al., 1998) and provide new one for the determination of the optimal reconstruction and decision

magnitude levels. This enables us to overreach the asymptotic performance of the optimal polar
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compander (Swaszek and Ku, 1986) for 0.2dB. On the other side, we increase model complexity

and processing delay, such that our model is more applicable for moderate and lower rates. We

also provide an algorithm for the computation of optimal phase reconstruction points numbers

in each magnitude region. Moreover, in order to enable simple performance calculation, we also

derive the approximate expression for SQNR in closed form. The presented features assure that

obtained solution should be of high significance, not only for researchers, but also for engineers.

Taking into consideration that circularly symmetric sources and complex presentation of signals

arise in numerous applications, it can be concluded that the usage area of this proposal is very

wide.

Since short-time probability density function for speech signals is a well-modeled as Gaus-

sian (Perić et al., 2007), polar quantization can be used for speech coding. Moreover, high

performance and a simple control over perceptual effects of quantization motivate the usage of

UPQ for sinusoidal audio coding (Pobloth et al., 2005; Popat and Zeger, 1992; Vafin and Kleijn,

2005). Since human eye sensitivity has circularly symmetric distribution, log-polar image sam-

pling has been utilized recently (Boluda and Pardo, 2004; Metta et al., 2004; Shortt et al.,

2006). Namely, in all applications where information is embedded in the phase or frequency of

a carrier signal (for example, synthetic aperture radars systems SARs (Arslan, 2001; Perić and

Jovković, 2002)), a polar analog-to-digital converter provides desirable phase information. As

argued in (Pearlman and Gray, 1978), discrete Fourier transform of a fairly general data sources

asymptotically leads to independent Fourier coefficients that have independent Gaussian real

and imaginary parts. This means that polar quantization can be also used for compressed rep-

resentation of coefficients obtained from the Fourier transform of signal (Pearlman and Gray,

1978; Pearlman, 1979). Nevertheless, taking into consideration that every source can be trans-

formed in a Gaussian by means of properly chosen filtering technique (Popat and Zeger, 2007),

polar quantizer model can also be applied to other sources. The practical significance of polar

quantization is also illustrated through its involvement in two patents which are related to

modulators and transmitters (Hasson and Barak, 2008; Zipper, 2008). In these patents polar

quantization is used for signal constellations.

The remainder of this paper is organized as follows. In Section 2 polar quantization back-

ground is presented, while in Section 3 detailed analysis of the new iterative method for the

optimal polar quantizer design is performed. Section 4 considers the iterative algorithm initial-

ization. The achieved numerical results for bivariate Gaussian source are the topics addressed

in Section 5. Finally, the summary and conclusions are provided in Section 6.

2 Polar quantization

We say that PDF pX,Y (x, y) of two dimensional random variable (X, Y ) is circular symmetric

if pX,Y (x, y) = g(
√
x2 + y2) for some function g(r). In other words, pX,Y is circular symmetric

if it is a function of only the radial component r =
√
x2 + y2.
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Two-dimensional vector quantizer Q is the function

Q : R2 → {P1, P2, . . . , PN} ⊂ R2

where Si = Q−1(Pi) is i-th quantization cell and Pi ∈ R2 is i-th representation level (reconstruc-

tion point). Polar coordinate system (r, θ) and polar quantizers are natural for two-dimensional

data with circularly symmetric density. Assume that the plane R2 is partitioned into L mag-

nitude regions by L magnitude decision levels (region bounds) 0 = r1 < r2 < . . . < rL <

rL+1 = +∞. Furthermore assume that i-th amplitude region is divided into Mi phase regions

where Mi ≥ 2 is integer and M1 +M2 + . . . +ML = N . Value Mi is called number of recon-

struction points in i-th region. It is assumed that phase decision levels θi,j are uniform, i.e.

θi,j = 2(j − 1)π/Mi, for j = 1, 2, . . . ,Mi. This assumption is natural due to the circular sym-

metry of density function. Quantizer Qpol is called polar quantizer if it cells Si,j, i = 1, 2, . . . , L

and j = 1, 2, . . .Mi are defined as

Si,j = {(r, θ) | ri ≤ r < ri+1, θi,j ≤ θ ≤ θi,j+1} .

Assume that reconstruction points Pi,j are given in the polar coordinates as (mi, ψij), i.e. that

all have the same magnitude mi for j = 1, 2, . . . ,Mj. Values mi and ψi,j are called magnitude

reconstruction level and phase reconstruction level respectively and satisfy ri ≤ mi ≤ ri+1 and

ψi,j = (2j−1)π/Mi. These assumptions is also natural due to the circular symmetry of density

function. In the rest of the paper we use the following vector notation: r = (r2, r3, . . . , rL),

m = (m1,m2, . . . ,mL) and M = (M1,M2, . . . ,ML).

The quality of the quantizer Q is measured by distortion of resulting reproduction in com-

parison to the original. Mostly used measure of distortion is mean-squared error. It is defined

as (Gersho and Gray, 1992)

D(Q) =
N∑
i=1

∫
Si

d(P, Pi)pX,Y (P )dP (1)

where d(·, ·) is an Euclidean distance. The N -level quantizer Q∗ is sad to be optimal if for any

other N -level quantizer Q there holds D(Q) ≥ D(Q∗). In the case of polar quantizer Qpol,

distorsion is given by (Swaszek and Ku, 1986; Perić et al., 2007)

D(Qpol) =
L∑
i=1

Mi∑
j=1

∫ ri+1

ri

∫ θi,j+1

θi,j

(r2 +m2
i − 2rmi cos(θ − ψi,j))

f(r)

2π
drdθ. (2)

where we denoted f(r) = 2πrg(r). Similarly, we say that Q∗
pol is L-region optimal polar quan-

tizer if D(Qpol) ≥ D(Q∗
pol) for any other L-region polar quantizer Qpol By solving the integral

in (2) with respect to θ and using θi,j = 2(j − 1)π/Mi and ψi,j = (2j − 1)π/Mi we obtain the

following relation

D(Qpol) = D(r;m;M) =
L∑
i=1

∫ ri+1

ri

(
r2 +m2

i − 2rmi sinc

(
π

Mi

))
f(r)dr. (3)
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Hence, the distorsion D(Q) of the polar quantizer Q is represented as the function of the values

ri, mi and Mi.

In the rest of the paper we assume that Q is given polar quantizer whose distorsion D(Q)

is given by relation (3). Our aim is to construct an iterative method for the computation of

optimal polar quantizer Q∗
pol.

3 Iterative method

An iterative method for optimization of two-dimensional polar quantizer, for circularly sym-

metric PDF, will be described. Let

F0(a, b) =

∫ b

a

f(r)dr; F1(a, b) =

∫ b

a

rf(r)dr. (4)

Expression (3) can be written as

D(Qpol) = D(r;m;M) = σ2 +
L∑
i=1

m2
iF0(ri, ri+1)− 2

L∑
i=1

mi sinc

(
π

Mi

)
F1(ri, ri+1). (5)

3.1 Optimization of ri and mi

Our goal is to minimizeD(r;m;M) under the constraints 0 = r1 < r2 < . . . < rL < rL+1 = +∞,

ri ≤ mi ≤ ri+1, Mi ∈ N, M1 +M2 + . . . +ML = N . This is constrained, mixed non-linear

optimization problem. For a fixed values of Mi, an optimal point (r̂, m̂) must satisfy the

following conditions

∂D

∂ri
=

(
m2

i−1 −m2
i − 2mi−1ri sinc

(
π

Mi−1

)
+ 2miri sinc

(
π

Mi

))
= 0, (6)

∂D

∂mi

= 2mi

∫ ri+1

ri

f(r)dr − 2 sinc

(
π

Mi

)∫ ri+1

ri

rf(r)dr = 0. (7)

From the last equations we directly obtain

r̂i =
m̂2

i − m̂2
i−1

2
[
m̂i sinc

(
π
Mi

)
− m̂i−1 sinc

(
π

Mi−1

)] , (8)

m̂i = sinc

(
π

Mi

)
F1(r̂i, r̂i+1)

F0(r̂i, r̂i+1)
. (9)

Note that the condition (9) is similar to the centroid condition which is satisfied by represen-

tation levels of the optimal scalar quantizer. Also by direct calculation we find that

∂2D

∂r2i

∣∣∣∣
ri=r̂i, mi=m̂i

= (m̂2
i − m̂2

i−1) exp

(
− r̂

2
i

8

)
> 0, (10)

under the condition mi > mi−1. Since D is the quadratic function of mi it is obvious that (9)

gives its global minimum with respect to mi. Above discussion confirms that (8) and (9) gives

the global minimum of D, with respect to r, if an optimal point (r̂, m̂) satisfies r̂i ≤ m̂i ≤ r̂i+1

for i = 1, 2, . . . , L.

5



3.2 Optimization of Mi

Now consider the minimization of D with respect to M. Recall that minimization is performed

under the conditions Mi ∈ N and M1 + M2 + . . . + ML = N . Suppose that r is fixed and

m is determined optimally, according to (8). Additionally suppose that ri < mi < ri+1. By

replacing (9) into (3) we obtain

D(r;M) =

∫ +∞

0

r2f(r)dr −
L∑
i=1

Ai sinc
2

(
π

Mi

)
, Ai =

[F1(r̂i, r̂i+1)]
2

F0(r̂i, r̂i+1)
, (11)

We temporary replace the conditionMi ∈ N with the weakerMi ≥ 1. Since 2σ2 =
∫ +∞
0

r2f(r)dr

is constant, the optimization problem reduces to

max
L∑
i=1

Ai sinc
2

(
π

Mi

)

s.t.
L∑
i=1

Mi = N,

Mi ≥ 0.

(12)

Last optimization problem can be solved using the Lagrange multipliers technique. Hence we

construct Lagrange function J(M) as

J(M) =
L∑
i=1

Ai sinc
2

(
π

Mi

)
− λ

(
L∑
i=1

Mi −N

)
, (13)

and find its maximum under the conditions Mi ≥ 2 (since at least two representation levels

should be located in each amplitude region). By differentiating expression (13) we find the

necessary conditions for the local minimum of the function J

∂J

∂Mi

= a(Mi)− Aiλ = 0, a(x) =
x− x cos

(
2π
x

)
− π sin

(
2π
x

)
π2

. (14)

The following lemma proves that equation (system of equations) (14) has unique solution M̂i

for the fixed value of Lagrange multiplier λ.

Lemma 1 Function a(x) is monotonically decreasing, convex function on half-segment [2,+∞)

i.e. a′(x) < 0 and a′′(x) > 0, for every x > 2.

Proof. First note that a(x) is continuously differentiable function on the half-segment

[2,+∞). Its derivative is given by

a′(x) =
−x2 cos

(
2π
x

)
+ x2 − 2π sin

(
2π
x

)
x+ 2π2 cos

(
2π
x

)
π2x2

. (15)

Let

g(t) = a′
(
2π

t

)
=

1

π2

[
1

2
t2 cos t− t sin t− cos t+ 1

]
. (16)
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We consider function g(t) on the half-segment [0, π). It is also continuously differentiable on

that segment. Since g(0) = 0 and g′(t) = − 1
2π
t2 sin t < 0 for t ∈ [0, π) we conclude g(t) < 0

for t ∈ (0, π) and g(t) is strictly decreasing function on the same interval. Hence a′(x) < 0

for x ∈ [2, π) and a′(x) is strictly increasing function on the same half-interval. Last implies

a′′(x) > 0 and hence a(x) is convex. �

Since a(x) is strictly decreasing function on [2,+∞) and limx→+∞ a(x) = 0, equation (14)

has unique solution for the fixed value of Lagrange multiplier λ. Moreover, since

∂2J

∂M2
i

= a′(Mi) < 0,
∂2J

∂Mi∂Mj

= 0,

unique solution of the system (14) is the global maximum of the function J(M) on the set

[2,∞)L.

For a given value of Lagrange multiplier λ, denote by M̃i(λ) the unique solution of (14).

Function M̃i(λ) is strictly decreasing, since a(x) is strictly decreasing and obviously Ai ≥ 0.

Furthermore limλ→0 M̃i(λ) = +∞ since limx→+∞ a(x) = 0. Condition Mi ≥ 2 implies that

M̃i(λ) maps the half-segment (0, 0.4
λ
] to [2,+∞).

Since the system (14) cannot be solved analytically, we obtain the approximate analytical

expression for M̃i(λ). Function a(x) can be expanded into the Taylor expansion around the

point x = +∞ as

a

(
1

x

)
=

2π2

3x3
+O

(
1

x5

)
. (17)

By replacing (17) into (14) we obtain the following approximate solution

M̂i(λ) =
3

√
2π2

3λAi

. (18)

The absolute difference |M̂i(λ)− M̃i(λ)| can be bounded as follows

|M̂i(λ)− M̃i(λ)| = M̃i(λ)

∣∣∣∣∣1− 3

√
2π2

3a(M̃i(λ))

∣∣∣∣∣
= M̃i(λ)

∣∣∣∣1− (1 + 4π2

45M̃2
i (λ)

+O

(
1

M̃4
i (λ)

))∣∣∣∣
=

4π2

45M̃2
i (λ)

+O

(
1

M̃3
i (λ)

)
.

(19)

It is worth mentioning that |M̂i(λ)−M̃i(λ)| → 0 when M̃i(λ) → 0. It is also decreasing function

(according to (19)) and for M̃i(λ) = 2 there holds |M̂i(λ)−2| = 0.532. Above discussions shows

that the absolute error of the approximation of M̃i(λ) by M̂i(λ) defined by (18) is less than 1

whenever M̃i(λ) ≥ 2.
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The value of Lagrange multiplier can be found from the condition
∑L

i=1 M̂1(λ) = N . Using

the relation (18) we directly found

λ =
2π2

3N3

(
L∑
i=1

A
−1/3
i

)3

. (20)

By replacing (20) in (18) we obtain the following approximate solution of the optimization

problem (12):

M̂i = N
A

−1/3
i∑L

j=1A
−1/3
j

(21)

Optimization problem (12) is an integer programming (IP) problem, since Mi are integers.

However the solution given by (21) is not an integer, in general. Hence we round M̂i to the

closest integer value, i.e. we setM∗
i = round(M̂i). However after the rounding operation, values

M∗
i might not satisfy the condition

∑L
i=1M

∗
i = N . If the sum on the left side is larger than N ,

the difference δ =
∑L

i=1M
∗
i = N is substracted from M∗

i corresponding to the smallest value

Ai. Similarly, if the sum is less than N , difference is added to the M∗
i corresponding to the

largest Ai.

3.3 Algorithm for optimizing Mi

Since the optimization problem (12) is nonlinear integer programming problem, we can apply

the conventional techniques for its solving (for example, Branch and Bound method (Li and

Sun, 2006)). The point M∗ = (M∗
1 ,M

∗
2 , . . . ,M

∗
L) can be used as a initial point. However,

this approach requires the implementation of integer programming method (or using the IP

solver, for example MOSEK, CPLEX, etc.). We present another method which is simple for

implementation and gives the results close to the optimal.

Values M∗
i can be furthermore improved by the following procedure. Pick the indices i and

j such that i < j. Denote

fij(x) = Ai sinc
2
(π
x

)
+ Aj sinc

2

(
π

M∗
i +M∗

j − x

)
.

Note that fij(M
∗
i ) is the sum of two summands corresponding to M∗

i and M∗
j in the objective

function from the optimization problem (12). From Lemma 1 we have

f ′′
ij(x) = Aia

′(x) + Aja
′(M∗

i +M∗
j − x) < 0

for every 2 ≤ x ≤ M∗
i +M∗

j − 2. Since f ′′
ij(x) < 0, function fij(x) has at most one global

minimum in the segment [2,Mij − 2] where Mij =M∗
i +M∗

j . This minimum can be computed

as the unique solution x̂ of the equation f ′
ij(x) = 0, if f ′

ij(2)f
′
ij(Mij − 2) < 0. Else it is one

of the boundary points of the segment [2,Mij − 2] (this case never happens in practice, but it

is possible theoretically). Such obtained value x̂ is again not integer, in general and hence we
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have to apply the rounding again. However since f ′′
ij(x) < 0, integer maximum x∗ is one of the

values ⌊x̂⌋ and ⌈x̂⌉. Value M∗
i can be used as a starting point. After the procedure value M∗

i

is set to x∗ and M∗
j is set to Mij − x∗.

Since we need an integer maximum of fij(x) andM
∗
i is a good approximation, we can obtain

x∗ simply by incrementing or decrementing M∗
i while fij increases. More strictly, it is realised

by the following procedure:

Algorithm 1 Imp(Ai, Aj,M
∗
i ,M

∗
j ) - Integer maximization of fij(x)

Require: Integers M∗
i ,M

∗
j ≥ 2 and positive reals Ai, Aj.

1: Mij :=M∗
i +M∗

j

2: x :=M∗
i

3: while (fij(x) is increasing) and (x < Mij − 2) do
4: x := x+ 1
5: end while
6: while (fij(x) is increasing) and (x > 2) do
7: x := x− 1
8: end while
9: return x

Note that exactly one of the while loops in steps 2 and 5 will be accessed. Algorithm 1

can be applied for each pair of indices {i, j}. In the practice, initial value of M∗
i is usually

very good approximation of the . Hence the number of steps of the Algorithm 1 is less than 3.

When applied to each pair {i, j}, Algorithm 1 improves the initial point in only few number of

pairs. All above discussion approves that initial values of M∗
i are excellent approximation of

the optimal solution of the optimization problem (12). Complete procedure is summarized in

the Algorithm 2.

3.4 Algorithm for the iterative method

Now we are ready to formulate the complete iterative method for design of the optimal polar

quantizer for circular symmetric source density. Initial values are:

1. Number of region boundaries L,

2. Total number of reconstruction levels N ,

3. Initial region boundaries 0 = r01 < r02 < · · · < r0L < r0L+1 = +∞.

In each step, algorithm first computes the new values Mk
i by Algorithm 2 and known values

rk−1
i . Then new values rki are computed by relation (8) and known valuesmk−1

i andMk
i . Finally,

the new magnitude reconstruction levels mk
i are computed by relation (9) and known values rki

and Mk
i . Algorithm is terminated when the relative difference between the distorsion in k-th

and k − 1-th iteration is less than ϵ.
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Algorithm 2 OptM(N ;A) - Optimization of the numbers of reconstruction levels in regions

Require: Values A = (A1, A2, . . . , AL)

1: M̂i := N
A

−1/3
i∑L

j=1A
−1/3
j

, for i = 1, 2, . . . , L

2: M∗
i := round(M̂i), for i = 1, 2, . . . , L

3: δ :=
∑L

i=1M
∗
i −N

4: if δ > 0 then
5: Let l be index such that Al is minimal
6: M∗

l :=M∗
l − δ

7: else
8: if δ < 0 then
9: Let l be index such that Al is maximal
10: M∗

l :=M∗
l + |δ|

11: end if
12: end if
13: for each pair {i, j}, 1 ≤ i < j ≤ L do
14: M∗

i := Imp(Ai, Aj,M
∗
i ,M

∗
j )

15: end for
16: return M∗ = (M∗

1 ,M
∗
2 , . . . ,M

∗
L)

Above procedure have one drawback. It is not guaranteed that values rki , computed by

relation (9) satisfy

0 = rk1 < rk2 < · · · < rkL < rkL+1 = +∞. (22)

We say that such vector r is degenerate. For sufficiently high valuesMk
i , we have sinc(π/Mk

i ) ≈
1 and according to (9) holds rki = (mk−1

i−1 + mk−1
i )/2. In such case, if mk−1

i are in ascending

order, the same holds for rki . So, r is not degenerate. But ifM
k
i are not sufficiently high (which

is usually the case for i = 1, 2 where Mk
i is around 4), relation (22) may not hold. Let p be the

minimal index such that rkp violates the ascending order condition. Recall that, according to

equation (10), value rkp is global minimum of D as the function of rp, under the condition that

Mj = Mk
j are fixed, mj = mk−1

j are fixed and in ascending order. Since rkp < rkp−1, rp = rkp−1

is minimum of D, as the function rp, under the condition rp > rkp−1. Hence, p − 1-th region

(between rkp−1 and rkp) vanishes. Hence, the value rkp should be dropped, Mk
p−1 points from

p − 1-th region should be assigned to the p-th region (i.e. Mk
p := Mk

p +Mk
p−1). By repeating

above procedure, we can eliminate all values rki violating ascending condition. Note that last

procedure does not increase the value of distorsion D. Algorithm 3 removes the degeneracy of

r and is based on above discussion.

Now we are ready to formulate Algorithm 4 for iterative construction of the optimal polar

quantizer for circular symmetric source density.

In practice, degeneracy occurs very rarely, when the initial conditions for Algorithm 4 are

suitably chosen. In next section we show one way for choosing an initial conditions and number

of regions L.

10



Algorithm 3 FixAsc(r,M, L) - removing the degeneracy of r

Require: Sequence of region bounds r = (r1, r2, . . . , rL, rL+1) where r1 = 0, rL+1 = +∞, se-
quence of reconstruction points numbers in each region M = (M1,M2, . . . ,ML) and number
of regions L.

1: p := 1;
2: while (p ≤ L) do
3: if rp < rp−1 then
4: Mp+1 :=Mp+1 +Mp

5: rj+1 := rj, Mj+1 :=Mj, for j = p, p+ 1, . . . , L
6: L := L− 1
7: else
8: p := p+ 1
9: end if
10: end while
11: return (r,M, L)

Algorithm 4 OptPQ(L,N, r0, ϵ) - Construction of the optimal polar quantizer for circular
symmetric source density

Require: Number of regions L and reconstruction points N , initial values r0i and M0
i such

that 0 = r01 < r02 < · · · < r0L < r0L+1 = +∞ and
∑L

i=1M
0
i = N and precision ϵ.

1: k := 1
2: D1 := +∞
3: repeat
4: k := k + 1

5: Ak
i :=

[F1(r
k−1
i , rk−1

i+1 )]
2

F0(r
k−1
i , rk−1

i+1 )
, for i = 1, 2, . . . , L

6: Mk := OptM(N,Ak)

7: rki :=
(mk−1

i )2 − (mk−1
i−1 )

2

2
[
mk−1

i sinc
(

π
Mk

i

)
−mk−1

i−1 sinc
(

π
Mk

i−1

)] , for i = 2, 3, . . . , L (rk1 := 0, rkL+1 := +∞)

8: (rk,Mk, L) := FixAsc(rk,Mk, L)

9: mk
i := sinc

(
π

Mk
i

) F1(r
k
i , r

k
i+1)

F0(rki , r
k
i+1)

, for i = 1, 2, . . . , L

10: Compute Dk := D(rk,mk,Mk) using the relation (5).
11: until (Dk−1 −Dk)/Dk < ϵ
12: return (rk,mk,Mk)

11



On the other side, Algorithm 4 is always convergent, since the distorsion Dk always de-

creases. However, as in the case of the Lloyd-Max algorithm for scalar quantizers (Max, 1960),

it is not guaranteed that the solution obtained by Algorithm 4 is optimal.

4 Initial values

This section provide an efficient way to choose initial values r0 and L for the Algorithm 4. It

is based on the result of Swaszek and Ku (Swaszek and Ku, 1986). This approach is based

on the companding technique and provide the an asymptotically optimal quantizer. Quantizers

obtained using companding technique are called companding quantizers. This technique is

applicable for various types of quantizers, see for example (Gersho and Gray, 1992; Jayant and

Noll, 1984; Perić et al., 2007; Swaszek and Ku, 1986).

An companding polar quantizer Qpol,com(x) is defined as Qpol,com(x) = G−1(UQpol(G(x)))

where UQpol(x) is an uniform polar quantizer and G(x) is compressor function. It is defined by

G : R2 7→ B(0, 1), G(x) =
g(r)

r
x, r = ∥x∥.

where g : R 7→ [0, 1] is polar compressor function and B(0, 1) is unit ball. The region bounds

yi and magnitude representation levels zi of the L-region uniform polar quantizer UQpol(x) are

given respectively by

yi =
i− 1

L
, i = 1, 2, . . . , L+ 1, zi =

yi + yi+1

2
=

2i− 1

2L
, i = 1, 2, . . . , L. (23)

Region bounds ri an magnitude representation levelsmi of companding polar quantizerQpol,com(x)

are given by ri = g−1(yi) and mi = g−1(zi).

Swaszek and Ku considered an optimization of the companding polar quantizer Qpol,com(x).

According to (Swaszek and Ku, 1986), optimal number of regions L and number of reconstruc-

tion points in i-th region are given by

L = round

√
N√
2π

∫ +∞
0

x−1/4f 1/4(x)dx[∫ +∞
0

x−1/2f 1/2(x)dx
]1/2

 (24)

M0
i =

√
2πNf 1/4(mi)m

3/4
i[∫ +∞

0
x−1/2f1/2(x)dx

]1/2 , (25)

while an optimal polar compressor function g(r) is defined by

g(r) =

∫ r

0
x−1/4f 1/4(x)dx∫ +∞

0
x−1/4f 1/4(x)dx

. (26)

Recall that ri = g−1(yi) and mi = g−1(zi). Since L is integer, it is given as the integer closest

to the expression in (24). However, it should be checked also values L− 1 and L+ 1.

12



Since the optimal companding polar quantizer is asymptotically optimal polar quantizer

(Swaszek and Ku, 1986), it can be used for the start of Algorithm 4. In other words, initial

parameters of Algorithm 4 can be chosen as the corresponding parameters of optimal compand-

ing polar quantizer. In such way, number of regions should be chosen according to (24) (also

values L − 1 and L + 1 should be tried) and initial region bounds r0i = g−1(yi) where g(r) is

given by (26).

5 Two-dimensional Gaussian source and numerical

examples

We test our algorithms on designing the optimal polar quantizer for two-dimensional Gaussian

source. Let (X, Y ) be two-dimensional Gaussian random variable such that X and Y are

uncorrelated. PDF function pX,Y (x, y) and function f(r) are given by

pX,Y (x, y) =
1

2πσ
exp

(
−x

2 + y2

2σ2

)
, f(r) = r exp

(
−r

2

2

)
. (27)

By direct computation using (4) we find

F1(a, b) = exp

(
−a

2

2

)
− exp

(
−b

2

2

)
,

F2(a, b) = a exp

(
−a

2

2

)
−
√
π

2
erf

(
a√
2

)
− b exp

(
−b

2

2

)
+

√
π

2
erf

(
b√
2

) (28)

where erf(x) = 2π−1/2
∫ x

0
exp(−t2)dt is an error function.

All algorithms are implemented in the symbolic programming package Mathematica (version

7.0). We show some results obtained by testing our implementations for uncorrelated two-

variable Gaussian source with unit variance (σ = 1). Parameters of the optimal polar quantizer

for N = 64 levels are given by

L = 6

r = (0, 0.276903, 0.663063, 1.11976, 1.65484, 2.34537,+∞)

m = (0.11707, 0.46865, 0.883483, 1.36178, 1.93031, 2.69542)

M = (2, 6, 11, 15, 16, 14)

D = 0.0620599, SQNR = 15.0822 dB.

Also, parameters of the optimal polar quantizer for N = 128 levels are given by

L = 8

r = (0, 0.323755, 0.62253, 0.943175, 1.29048, 1.68843, 2.16081, 2.80557,+∞)

m = (0.193301, 0.475613, 0.780552, 1.10901, 1.47377, 1.89305, 2.4061, 3.10778)

M = (4, 9, 14, 18, 22, 23, 22, 16)

D = 0.0317631, SQNR = 17.9911 dB.
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Figure 1: SQNR value of optimal polar quantizer and optimal scalar quantizer for different
values of bitrate R.

Here D denotes the distorsion of quantizer, defined by (3) and SQNR = 10 log(2σ2/D) denotes

the value of Signal-to-Quantizer-Noise-Ratio. Figure 1 shows the dependence of SQNR of the

optimal polar quantizer versus the total bitrate R = log2N . We also included, for the purpose

of comparation, the dependence of SQNR for the optimal scalar quantizer (Jayant and Noll,

1984).

It can be noticed that the dependence is almost linear. Asymptotic expression for the

distorsion D, valid for large values of N , is equal to D = 2π
3N

(Perić, et al., 2007; Swaszek and

Ku, 1986). Therefore, the asymptotic dependence of SQNR, as a function of R is also linear.

By linear regression we obtain the approximate values of the parameters of linear dependence

SQNR ≈ −2.09141 + 2.87887 · R, from Figure 1, where the correlation coefficient equal to

0.99992. This confirms the linear dependence of SQNR for smaller values of bitrate R.

Note that for N = 256, the distorsion and SQNR of the optimal polar quantizer are given by

D = 0.0159589 and SQNR = 20.9072 dB. Optimal uniform polar quantizer (UPQ) (Swaszek

and Ku, 1986) has total distorsion DUQ = 0.01683 and SQNR = 20.7495 dB while an optimal

two-dimensional vector quantizer has DV Q = 0.01575 and SQNR = 21.0375 dB (Gersho and

Gray, 1992). Hence the difference in SQNR values between an optimal vector and optimal

polar quantizer is only 0.057224 dB while the difference between an optimal vector and optimal

uniform polar quantizer is 0.28 dB.

Number of iterations required for our method (Algorithm 4), for ϵ = 10−6 is 244. It shows

the slow convergence of our method.
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6 Conclusion

In this paper we present one new method for the resolution-constrained polar quantization

optimization. We provide iterative algorithm for determination of the optimal reconstruction

and decision magnitude levels, as well as, algorithm for optimization of number of phase cells

within each magnitude level. We point out that firstly we obtain real values for the optimal

numbers of reconstruction points in magnitude regions and after that we assure algorithm which

enables transformation of optimal real values to the optimal integer ones.

The concept of proposed design method can be also considered as the iterative improving

of the optimal polar compander. The achieved gain in reproduced signal quality is not smaller

than 0.2dB, while design and implementation complexities are enlarged. Because of that,

the obtained optimal polar quantizer can be used for moderate and lower rates in analog-

to-digital conversion of signals with circularly symmetric densities and complex presentation

(audio coding, image coding, spectral phase coding SPC, synthetic aperture radars systems

SARs, coding of the discrete Fourier transform). Furthermore, a possibility that any kind of

density can be transformed in a Gaussian distribution by means of properly chosen filtering

gives additional importance to the proposed quantizer model.

In this paper we also derive the approximate expression for SQNR in closed form which

enables easily calculation of optimal polar quantizer performances. Therefore, we believe that

the novel quantizer model is of high significance not only for researchers but also for engineers.
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