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0 THE DESCRIPTION AND USE OF THE LECTURE NOTES

List of Animations

Construction of a tractrix
Spherical surfaces
Parabolic pseudo–spherical surfaces
Hyperbolic pseudo–spherical surfaces
Elliptic pseudo–spherical surfaces
Vectors of the trihedra along an asymptotic line of a pseudo-sphere
Osculating plane and osculating circle at a point of an asymptotic
line on a pseudo-sphere
Osculating plane and osculating sphere at a point of an asymptotic
line on a pseudo-sphere

0 The Description and Use of the Lec-

ture Notes

The electronic lecture notes are typeset by AMS–LATEX; it seems
that LATEX yields the best quality in display of mathematical formu-
lae. We created the PDF file directly from the LATEX source file by
\pdflatex filename.

The graphics are included in PNG format in the LATEX source code;
the animations are in HTM format and can be linked to.

All our graphics and animations were created exclusively by the use of
our own software package ([3, 1, 2, 4]) in Borland PASCAL, and also
in DELPHI, which provides a user interface for interactive elements.

Our graphics created in PASCAL can be exported to various for-
mats, including BMP, PS, PLT and JVX. These formats can then be
converted by any graphics converter software to

• an EPS file in TEX or LATEX

• a PDF or PNG file

• a GIF file in HTML or WORD documents

We use the software package Animagic GIF 32 to create an animation
in animated GIF format from a sequence of GIF files of our graphics,
and include the animation as an animated GIF image in an HTML
file.

We decided to use small–sized PNG graphics in the lecture notes to
have better control of the their placement in the text, and to reduce
the time to open the lecture notes. The full–sized PDF graphics can
be linked to by clicking on the PNG picture. To return to the lecture
notes, we recommend to click on Close in the navigation bar at the
top of the full–sized picture.
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1 A STUDY OF PSEUDO–SPHERES

Our animations are linked to by clicking on the following icon

The interactive elements can be opened by clicking on

Finally we mention that the best quality of viewing is obtained in
Full Screen mode.

1 A Study of Pseudo–Spheres

Here we study the most important geometrical properties of pseudo–
spheres.

1.1 Intoduction

The study of pseudo–spheres is part of every course on Differential
Geometry. We introduce pseudo–spheres as surfaces of rotation gen-
erated by tractrices (Definition 1.1). A parametric representation a
tractrix is derived in Proposition 1.2 from its geometric definition in
Definition 1.1. In Proposition 1.3, we establish a parametric repre-
sentation for pseudo–spheres.
We also give a characterisation of pseudo–spheres as surfaces of ro-
tation with constant negative Gaussian curvature (Remark 1.4), and
of the related hyperbolic, elliptic spherical, and parabolic, hyperbolic
and elliptic pseudo–spherical surfaces.
Furthermore, we solve the differential equation for asymptotic lines
on pseudo–spheres (Proposition 1.5), and give a parametric repre-
sentation for the asymptotic lines with respect to their arc lenghts
(Proposition 1.6). This parametric representation is used to compute
the vectors of the trihedra, the curvature and torsion along the asymp-
totic line (Proposition 1.8), and to determine the circles (Proposition
1.10 (a)) and spheres (Proposition 1.10 (b)).
Finally, we solve the differential equations for the geodesic lines on
pseudo–spheres (Proposition 1.12).
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1 A STUDY OF PSEUDO–SPHERES

1.2 The Tractrix and Pseudo–Spheres

Pseudo–spheres are generated by the rotation of so-called tractrices
in the x1x3–plane about the x3–axis.

Definition 1.1 The tractrix
Let γ and γ∗ be a curve and a straight line in a plane, respectively,
that have no points of intersection. Given a point P on γ, letP ∗

denote the point of intersection of γ∗ with the tangent to γ at P . If
the distances between the points P and P ∗ have a constant value d,
the curve γ is called a tractrix (Figure 1).

Figure 1 The construction
of a tractrix

Figure 2 A familiy of
tractrices

We derive a parametric representation for the tractrix.

Proposition 1.2 We introduce a Cartesian coordinatesystem in the
plane such that the straight line γ∗ is the y–axis. Then γ has a
parametric representation

~x(φ) =

{
d sinφ, d

(
log

(
tan

(
φ

2

))
+ cosφ

)}
(φ ∈ (0, π/2)).

(1.1)

Proof. Let ~x(t) = {t, y(t)} be a parametric representation of γ.
Then the tangent to γ at t is given by ~x(t)+λ{1, y′(t)} (λ ∈ IR), and
so we obtain for P ∗

−→
OP ∗ = {0, p∗} = {t, y(t)}+ λ{1, y′(t)}, that is λ = −t.

We observe that γ ∩ γ∗ = ∅ implies d > 0, hence we have

d = d(P, P ∗) = ‖~x(t)− (~x(t)− t{1, y′(t))}‖ = |t|
√

1 + (y′(t))2

and so, since |t| > 0,

y′(t) = ±
√
d 2 − t2

|t|
for |t| < d. (1.2)

We choose the upper sign in (1.2) and t ∈ (0, d), and obtain

y(t) =

∫ √
d 2 − t2

t
dt. (1.3)

Since t ∈ (0, d), we may put t = d sinφ for φ ∈ (0, π/2) and this
yields ∫ √

d 2 − t2

t
dt =

∫ √
d 2 − d 2 sin2 φ

d sinφ
d cosφ dφ

= d

∫
cos2 φ

sinφ
dφ = d (I1 + I2) , (1.4)

where

I1 =

∫
dφ

sinφ

and

I2 =

∫
sinφ dφ = − cosφ =

√
1− sin2 φ =

√
d 2 − t2

d
+ c2 (1.5)
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1 A STUDY OF PSEUDO–SPHERES

where c2 is a constant of integration. To evaluate the integral I1, we
make the substitution z = tan (φ/2). Then z ∈ (0, 1) and we obtain

dφ

dz
=

d

dz
(2 arctan z) =

2

1 + z2
,

sinφ = 2 sin (φ/2) cos (2φ/2) = 2 tan (φ/2) cos2 (φ/2)

= 2 tan (φ/2)
cos2 (φ/2)

cos2 (φ/2) + sin2 (φ/2)

=
2 tan (φ/2)

1 + tan2 (φ/2)
=

2x

1 + x2

and

I1 =

∫
1 + z2

2z

2

1 + z2
dz =

∫
dz

z
= log z + c1

= log

(
tan

(
φ

2

))
+ c1, (1.6)

where c1 is a constant of integration. We put c = d(c1 + c2). Then
it follows from (1.3), (1.4), (1.5) and (1.6) that

y(φ) = d

(
log

(
tan

(
φ

2

))
+ cosφ

)
+ c.

If we choose c such that limφ→π/2 y(φ) = 0, then we have c = 0, and
(1.1) is an immediate consequence. �

We recall that a surface of rotation is generated by the rotation of
a curve γ in the x1x3–plane about the x3-axis. If γ is given by a
parametric representation ~x(t) = {r(t), 0, h(t)} for t in some open
interval I, where r and h are continuously differentiable on I with
r(t) > 0 on I, then we write u1 = t and u2 for the angle of rotation,
and obtain the following parametric representation for the surface of

rotation RS(γ) generated by the curve γ

~x(ui) = {r(u1) cos u2, r(u1) sinu2, h(u1)}
((u1, u2) ∈ I × (0, 2π)). (1.7)

Proposition 1.3 The pseudo–sphere generated by the tractrix given
by (1.1) has a parametric representation

~x(ui) =

{
e−u1

cosu2, e−u1

sinu2,

∫ √
d2 − e−2u1 du1

}
((u1, u2) ∈ (log (1/d),∞)× (0, 2π)) (Figure 3). (1.8)

Figure 3 A Pseudo–sphere

Proof. Writing t = t(t ∗) = e−t ∗ > 0 and ~y ∗ = ~y(t(t ∗)), we obtain
from (1.2) with the lower sign

d~y ∗

dt ∗
=
d~y

dt

dt

dt ∗
= −

√
d2 − e−2t ∗

e−t ∗

(
−e−t ∗

)
=
√
d2 − e−2t ∗ for t ∗ > log (1/d).

6
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1 A STUDY OF PSEUDO–SPHERES

We put u1 = t ∗ and the parametric representation (1.8) is an imme-
diate consequence of (1.7). �

Remark 1.4 Pseudo–spheres are surfaces of revolution of constant
negative Gaussian curvature K.
If we assume that K : I → IR is a given function and write u = u1,
for short, then the surface of rotation that has K as its Gaussian
curvature is given by (for details)

r′′(u) +K(u)r(u) = 0 and h(u) = ±
∫ √

1− (r′(u))2 du, (1.9)

and we may choose the upper sign for h without loss of generality.
Surfaces of rotation with a given constant Gaussian curvature are
called spherical or pseudo–spherical surfaces depending on whether
K > 0 or K < 0.
First we assume K > 0 and put K = 1/c2 for some constant c > 0.
Then the general solution of the differential equation in (1.9) is

r(u)= λ cos
(u
c

)
with λ > 0

and we obtain

h(u)=

∫ √
1− λ2

c2
sin2

(u
c

)
du. (1.10)

There three different types of spherical surfaces corresponding to the
cases λ = c, λ > c or λ < c.

Case 1. λ = c

Then the surface has a parametric representation

~x(ui) =

(
c cos

(
u1

c

)
cosu2, c cos

(
u1

c

)
sinu2, c sin

(
u1

c

))
((u1, u2) ∈ (−π/2, π/2)× (0, 2π)).

This is a sphere with radius c and centre in the origin.

Case 2. λ > c

The corresponding surfaces are called hyperbolic spherical surfaces.
Now the integral for h in (1.10) only exists for values of u with∣∣∣sin(u

c

)∣∣∣ ≤ c

λ
,

that is

u ∈ Ik =
[
−c arcsin

( c
λ

)
+ kπ, c arcsin

( c
λ

)
+ kπ

]
for k = 0,±1,±2, . . . (left in Figure 4). Every interval Ik defines a
region of the surface. The radii of the circles of the u2–lines are min-
imal at the end points of the intervals Ik and equal to r =

√
λ2 − c2,

whereas the maximum radius R = λ is attained in the middle of each
region (left in Figure 6).

Case 3. λ < c

The corresponding surfaces are called elliptic spherical surfaces (right
in Figure 4). Now the integral for h in (1.10) exists for all u and the
radii r of the circles of the u2–lines attain all values r ≤ λ.

Figure 4 Spherical surfaces

7
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1 A STUDY OF PSEUDO–SPHERES

Now we assume K < 0 and put K = −1/c2 for some constant c > 0.
The general solution of the differential equation in (1.9) is

r(u) = C1 cosh
(u
c

)
+ C2 sinh

(u
c

)
with constants C1 and C2.

Case 1. C1 = −C2 = λ 6= 0

The corresponding surfaces are called parabolic pseudo–spherical sur-
faces (left in Figure 5). They have a parametric representation with

r(u1) = λ exp

(
−u

1

c

)
and

h(u1) =

∫ √
1− λ2

c2
exp

(
−2u1

c

)
du1 for u1 > c log (|λ|/c).

Case 2. C2 = 0 and C1 = λ 6= 0

The corresponding surfaces are called hyperbolic pseudo–spherical
surfaces (middle in Figure 5). They have a parametric representation
with

r(u1) = λ cosh

(
u1

c

)
and h(u1) =

∫ √
1− λ2

c2
sinh2

(
u1

c2

)
du1

for |u1| ≤ c · arsinh

(
c

|λ|

)
= c log

(
c

|λ|
+

√
c2

λ2
+ 1

)
.

The radii r of the circles of the u2–lines satisfy |λ| ≤ r ≤
√
λ2 + c2

(right in Figure 6).

Case 3. C1 = 0 and C2 = λ 6= 0

The corresponding surfaces are called elliptic pseudo–spherical sur-
faces. They have a parametric representation with

r(u1)= λ sinh

(
u1

c

)

and

h(u1) =

∫ √
1− λ2

c2
cosh2

(
u1

c

)
du1 (1.11)

for all u1 with

cosh

(
u1

c

)
≤ c

|λ|
;

(since coshu1 ≥ 1 for all u1, we must have |λ| ≤ c) (right in Figure
5); the integral for h in (1.11) is elliptic. The radii r of the circles
of the u2–lines satisfy 0 ≤ r ≤

√
c2 − λ2.

Figure 5 Pseudo–spherical surfaces

parabolic hyperbolic elliptic
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1 A STUDY OF PSEUDO–SPHERES

Figure 6 Hyperbolic spherical and pseudo–spherical
surfaces with minimal and maximal radii of u2–lines

1.3 Aymptotic Lines on a Pseudo–Sphere

We recall that the second fundamental coefficients Lik (i, k = 1, 2) of
a surface of rotation with a parametric representation

~x(ui) = {r(u1) cos u2, r(u1) sinu2, h(u1)}

where r(u1) > 0 and |r′(u1)|+ |h′(u1| > 0 are given by

L11(u
i) = L11(u

1) =
h′′(u1)r′(u1)− h′(u1)r′′(u1)√

(r′(u1))2 + (h′(u1))2
,

L12(u
i) = L21(u

i) = 0

and

L22(u
i) = L22(u

1) =
h′(u1)r(u1)√

(r′(u1))2 + (h′(u1))2
.

In the case of the pseudo–sphere, we have (r′)2 + (h′)2 = 1, hence
r′′r′ + h′′h′ = 0 and so h′′ = −r′′r′/h′, and the second fundamental
coefficients are given by

L11 = h′′r′ − h′r′′ = −(r′)2r′′

h′
− r′′h′

= −r
′′

h′
(
(r′)2 + (h′)2

)
= −r

′′

h′
(1.12)

and
L22 = h′r. (1.13)

Aysmptotic lines on a surface with second fundamental coefficients
Lik (k = 1, 2) are the real solutions of the differential equations

L11(u
i)
(
du1
)2

+ 2L12(u
i)du1du2 + L22(u

i)
(
du2
)2

= 0; (1.14)

they only exist in neighbourhoods of so–called hyperbolic points of
the surface, that is points with L = L11L22 − (L12)

2 > 0.

9
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1 A STUDY OF PSEUDO–SPHERES

In the case of surfaces of rotation, the differential equation (1.14) for
asymptotic lines reduces to

du2

du1
= ±

√
−L11(u

1)

L22(u1)
=

√
r′′(u1)

r(u1)(h′(u1))2

for r(u1)r′′(u1) > 0. (1.15)

Now we give the asymptotic lines on the pseudo–sphere.

Proposition 1.5 The asymptotic lines on the pseudo–sphere with a
parametric representation

~x(ui) =

{
e−u1

cosu2, e−u1

sinu2,

∫ √
1− e−2u1 du1

}
for (u1, u2) ∈ (0,∞)× (0, 2π) (1.16)

((1.8) with d = 1) are given by

u1(t) = t and u2(t) = ± log

(
1 +

√
1− e−2t

e−t

)
+ c

for all t > 0, (1.17)

where c ∈ IR is a constant of intgration (Figure 7).

Proof. Again, we write u = u1, and observe that

r(u) = e−u, h′(u) =
√

1− e−2u and r′′(u) = r(u).

Hence the differential equation (1.15) for the asymptotic lines reduces
to

du2

du1
= ± 1

|h′(u)|
= ± 1

h′(u)
,

since h′(u) > 0 for all u > 0. Therefore we have to solve the integral

I =

∫
du√

1− e−2u
.

The substitution t = e−u yields

I = −
∫

dt

t
√

1− t2
=

∫
1

1− t2

(
−dt
t2

)
.

Now we put z = 1/t, and obtain dz = −dt/t2 and

I =

∫
dz

z

√
1− 1

z2

=

∫
dz

z2 − 1
= log

(
z +

√
z2 − 1

)

= log

(
1 +

√
1− t2

t

)
= log

(
1 +

√
1− e−2u

e−u

)
.

�

Figure 7 Families of asymptotic lines
on a speudo–sphere
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1 A STUDY OF PSEUDO–SPHERES

We choose the upper sign and c = 0 in (1.17), that is, we consider
the aysmptotic line given by

u1(t) = t and u2(t) = log

(
1 +

√
1− e−2t

e−t

)
for all t > 0, (1.18)

It is useful to obtain a parametric representation for the asymptotic
line with respect to its arc length s.

Proposition 1.6 The asymptotic line given by (1.18) has a para-
metric representation

~x ∗(s) =

{
1

cosh s
cos s,

1

cosh s
sin s, s− tanh s

}
for all s > 0. (1.19)

Proof. We recall that the first fundamental coefficients for surfaces
of rotation are given by

g11(u
i) = g11(u

1) = (r′(u1)2 + (h′(u1))2,

g12(u
i) = g21(u

i) = 0

and

g22(u
i) = g22(u

1) = (r(u1))2.

Therefore, we obtain for the pseudo–sphere with a parametric repre-
sentation (1.16)

g11(u
1) = 1 and g22(u

1) = e−2u1

,

hence for the aymptotic line given by (1.18)

‖~x ′
(t)‖2 = g11(u

1(t))

(
du1(t)

dt

)2

+ g22(u
1(t))

(
du2(t)

dt

)2

= 1 +
e−2t

1− e−2t
=

1

1− e−2t
.

Now it follows for the arc length of the asymptotic line by (1.17)

s(t) =

∫
‖~x ′

(t)‖ dt =

∫
dt√

1− e−2t

= log

(
1 +

√
1− e−2t

t

)
= u2(t).

This implies

ese−t − 1 =
√

1− e−2t and e−2t
(
e2s + 1

)
− 2e−tes = 0,

that is, since e−t > 0

e−t =
2es

e2s + 1
=

1

cosh s
. (1.20)

Furthermore, we have

h(s) = h(t(s)) =

∫ √
1− e−2t(s)

dt(s)

ds
ds

=

∫ √
1− 1

cosh2(s)

√
1− 1

cosh2(s)
ds

=

∫ (
1− 1

cosh2(s)

)
ds = s− tanh (s).

This and (1.20) together yield the parametric representation (1.19).
�
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1 A STUDY OF PSEUDO–SPHERES

Remark 1.7 Another, simpler proof is to check if

‖~̇x ∗(s)‖ = 1 where ~̇x ∗(s) =
d~x ∗(s)

ds
.

Writing φ(s) = 1/ cosh s, we obtain

~̇x ∗(s) =
{
φ̇(s) cos s, φ̇(s) sin s, 1− φ2(s)

}
+

{−φ(s) sin s, φ(s) cos s, 0}
and

‖~̇x ∗(s)‖2 = (φ̇(s))2 + (1− φ2(s))2 + φ2(s)

= (φ̇(s))2 + 1− φ2(s) + φ4(s).

Since

(φ̇(s))2 =

(
d

ds

(
1

cosh s

))2

=
sinh2(s)

cosh4(s)

=
cosh2(s)− 1

cosh4(s)
= φ2(s)− φ4(s),

we obtain

‖~̇x ∗(s)‖2 = φ2(s)− φ4(s) + 1− φ2(s) + φ4(s) = 1 for all s > 0.

Figure 8 The vectors of a trihedron

1.4 The Vectors of the Trihedra and the Curva-
ture along an Asymptotic Line

Now we compute the vectors of the trihedra and the curvature along
the aymptotic line given by (1.18).

Proposition 1.8 The vectors ~vk(s) (k =, 1, 2, 3) of the trihedra (Fig-
ure 8), the curvature κ(s) and torsion τ(s) along the asymptotic line
given by (1.19) are

~v1(s) = − sinh s

cosh2(s)
{cos s, sin s,− sinh s}

+
1

cosh s
{− sin s, cos s, 0}, (1.21)

~v2(s) = − 1

cosh2(s)
{cos s, sin s,− sinh s}

− sinh s

cosh s
{− sin s, cos s, 0}, (1.22)

~v3(s) =
1

cosh s
{sinh s cos s, sinh s sin s, 1} (1.23)

κ(s) =
2

cosh s
. (1.24)

and

τ(s) = 1. (1.25)

Proof. We omit the arguement s in the function φ. We already
know from Remark 1.7 that the tangent vector is

~v1(s) = ~̇x ∗(s) = {φ̇ cos s, φ̇ sin s, 1− φ2}+ {−φ sin s, φ cos s, 0}

= − sinh s

cosh2(s)
{cos s, sin s,− sinh s}+

1

cosh s
{− sin s, cos s, 0}

12
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which is (1.21).
This yields

~̈x ∗(s) = {(φ̈− φ) cos s, (φ̈− φ) sin s,−2φ̇φ}+
2{−φ̇ sin s,−φ̇ cos s, 0}.

It follows from

φ̇ = − sinh s

cosh2(s)
= −φ2 sinh s

that

φ̈ = −φ2 cosh s− 2φ̇φ sinh s = −φ+ 2φ3 sinh2 s

= −φ+ 2φ− 2φ3 = φ− 2φ3

and

φ̈− φ = −2φ3.

Therefore, we have

~̈x ∗(s) = − 2

cosh3(s)
{cos s, sin s,− sinh s}−

2
sinh s

cosh2(s)
{− sin s, cos s, 0}.

Now we obtain for the curvature κ(s) along the asymptotic line

κ2(s) = ‖~̈x ∗(s)‖2 = 4

(
1 + sinh2(s)

cosh6(s)
+

sinh2(s)

cosh4(s)

)
= 4

1

cosh4(s)
(1 + sinh2(s)) =

4

cosh2(s)
,

hence

κ(s) =
2

cosh s

which is (1.24).
Now the principal normal vectors ~v2(s) along the asymptotic line are
given by

~v2(s) =
1

κ(s)
~̈x ∗(s)

= − 1

cosh2(s)
{cos s, sin s,− sinh s} − sinh s

cosh s
{− sin s, cos s, 0}

which is (1.22).
Furthermore, since

~b(s) ={cos s, sin s,− sinh s} × {− sin s, cos s, 0}
= {sinh s cos s, sinh s sin s, 1},

the binormal vectors ~v3(s) along the asymptotic line are given by

~v3(s) = ~v1(s)× ~v2(s) =

(
sinh2(s)

cosh3(s)
+

1

cosh3(s)

)
~b

=
1

cosh s
{sinh s cos s, sinh s sin s, 1}

which is (1.23).
Finally, we obtain from (1.23)

~̇v3(s) =
1

cosh2 s
{cos s, sin s,− sinh s}+

sinh s

cosh s
{− sin s, cos s, 0}

(1.26)
and so by (1.23)

τ(s) = −~v2(s) • ~̇v3(s) =
1

cosh4(s)
(1 + sinh2(s)) +

sinh2 s

cosh2 s

=
1

cosh2 s
(1 + sinh2 s) = 1.

�

13
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Remark 1.9 (a) We can easily check the result (1.23) for the binor-
mal vector of the asymptotic line by using the well–known fact, that
the osculating planes and the tangent planes of a surface along an
asymptotic line with non–vanishing curvature coincide, that means
that

~v3(s) = ± ~N(ui(s))

where

~N(ui) =
~x1(u

i)× ~x2(u
i)

‖~x1(ui)× ~x2(ui)‖
are the surface normal vectors of the surface with a parametric repre-
sentation ~x(ui). We note that the surface normal vectors of a surface
of rotation are

~N(ui) =
1

(r′(u1))2 + (h′(u1))2
{−h′(u1) cosu2,−h(u1) sinu2, r′(u1)}.

We already know that (r′(u1))2 +(h′(u1))2 = 1 for the pseudo–sphere,
and for the asymptotic line

h′(u1(s)) =

√
1− 1

cosh2 s
=
| sinh s|
cosh s

=
sinh s

cosh s
,

since s > 0,

r′(u1(s)) = −r(u1(s)) =
1

cosh s

and u2(s) = s. Thus the surface normal vectors of the pseudo–sphere
along the asymptotic line are given by

~N(ui(s)) =
1

cosh s
{− sinh s cos s,− sinh s sin s, 1} = −~v3(s).

(b) The pseudo–sphere has constant Gaussian curvature K(ui) = −1.
Therefore we have by the Beltrami-Enneper theorem for the torsion
along the asymptotic line

|τ(s)| =
√
−K(ui(s)) = 1.

1.5 The Osculating Circles and Spheres along an
Asymptotic Line on a Pseudo–Sphere

Now we consider the osculating circles and spheres along the asymp-
totic line on our pseudo–sphere.

Proposition 1.10 Let γ be the asymptotic line with a parametric
representation (1.19).
(a) Then the centres of curvature along γ are given by

~xm(s) =

{
cos s

2 cosh s
,

sin s

2 cosh s
, s− 1

2
tanh s

}
−

1

2
sinh s{− sin s, cos s, 0}, (1.27)

hence the osculating circle of γ at s has a parametric representation

~ym,s(t) = ~xm(s) +
cosh s

s
(cos t~v1(s) + sin t~v2(s)) for t ∈ (0, 2π).

(1.28)
(b) The centre and radius of the osculating sphere of γ at s are

~m(s) =

{
1

2
cosh s cos s,

1

2
cosh s sinh s, s

}
−

1

2
sinh s{− sin s, cos s, 0} (1.29)

and

rm(s) =
1

2

√
cosh2 s+ sinh2 s. (1.30)

Proof. (a) The radius of curvature of γ at s is by (1.24)

ρ(s) =
1

κ(s)
=

cosh s

2
.
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Therefore we obtain from (1.19) and (1.22) for the centre of curvature
of γ at s

~xm(s) = ~x ∗(s) + ρ(s)~v2(s) ={
cos s

cosh s
,

sin s

cosh s
, s− sinh s

cosh s

}
−
{

cos s

2 cosh s
,

sin s

2 cosh s
,− sinh s

2 cosh s

}
−

sinh s

2
{− sin s, cos s, 0} =

{
cos s

2 cosh s
,

sin s

2 cosh s
, s− 1

2
tanh s

}
− sinh s

2
{− sin s, cos s, 0}

which is (1.27). Now (1.28) follows immediately from the definition
of the osculating circle of a curve at s.

Figure 9 Osculating plane and cir-
cle

(b) Since ρ̇(s) = sinh(s)/2 and τ(s) = 1 by (1.25), we obtain the
centre of the osculating sphere of γ from (1.23) and (1.27)

~m(s) = ~x ∗(s) + ρ(s)~v2(s) +
ρ̇(s)

τ(s)
~v3(s) = ~xm(s) +

sinh s

2
~v3(s)

=

{
cos s

2 cosh s
,

sin s

2 cosh s
, s− 1

2
tanh s

}
− 1

2
sinh s{− sin s, cos s}+

+

{
sinh2 s cos s

2 cosh s
,
sinh2 s sin s

2 cosh s
,
tanh s

2s

}

=

{
1

2
cosh s cos s,

1

2
cosh s sinh s, s

}
− 1

2
sinh s{− sin s, cos s, 0}

which is (1.29). Finally, we obtain for the radius of the osculating
sphere

r2
m(s) = ρ2(s) +

(
ρ̇(s)

τ(s)

)2

=
1

4

(
cosh2 s+ sinh2 s

)
,

and (1.30) is an immediate consequence. �

Now we consider the curve of the centres of the osculating spheres of
the asymptotic line.

Proposition 1.11 Let γ be the asymptotic line with a parametric
representation (1.19) and γm be the curve of the centres of the oscu-
lating spheres along γ. Then the arc length s∗ along γm is given by

s∗(s) = sinh s, (1.31)

and γm has the following parametric representation with respect to
s∗

~m ∗(s∗) ={
1

2

√
1 + (s∗)2 cos (ψ∗(s∗)),

1

2

√
1 + (s∗)2 sin (ψ∗(s∗)), ψ∗(s∗)

}
−

s∗

2
{− sin (ψ∗(s∗)), cos (ψ∗(s∗)), 0}where ψ∗(s∗) = Arsinh(s∗).

(1.32)
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The vectors ~v ∗(s∗) of the trihedra, the curvature κ∗(s∗) of γm at s∗

are

~v ∗1 (s∗) ={
s∗√

1 + (s∗)2
cos (ψ∗(s∗)),

s∗√
1 + (s∗)2

sin (ψ∗(s∗)),
1√

1 + (s∗)2

}
,

(1.33)

~v ∗2 (s∗) =
1√

1 + (s∗)2

(
1√

1 + (s∗)2
{cos (ψ∗(s∗)), sin (ψ∗(s∗)),−s∗}

+ {−s∗ sin (ψ∗(s∗)), s∗ cos (ψ∗(s∗)), 0}) . (1.34)

~v ∗3 (s∗) =
1√

1 + (s∗)2
{− sin (ψ∗(s∗)), cos (ψ∗(s∗)), 0}−

s∗

1 + (s∗)2
{cos (ψ∗(s∗)),− sin (ψ∗(s∗)),−s∗} (1.35)

and

κ∗(s∗) =
1√

1 + (s∗)2
(1.36)

Figure 10 Osculating plane
and sphere

Figure 11 Osculating
sphere

Proof. Omitting the argument s, and using Frenet’s formulae and
τ = 1, we obtain

d~m

ds
=

d

ds

(
~x ∗ + ρ~v2 +

ρ̇

τ

)
= ~v1 + ρ̇~v2 + ρ~̇v2 + ρ̈~v3 + ρ̇~̇v2

= ~v1 + ρ̇~v2 + ρ

(
−1

ρ
~v1 + ~v3

)
+ ρ̈~v3 − ρ̇~v2 = (ρ+ ρ̈)~v3.

Since ρ(s) = ρ̈(s) = cosh s/2, it follows from (1.24) that

d~m(s)

ds
= cosh s~v3(s) = {sinh s cos s, sinh s sin s, 1} (1.37)

and ∥∥∥∥d~m(s)

ds

∥∥∥∥ =
√

sinh2 s+ 1 = | cosh s| = cosh s,

hence the arc length s∗ along γm is given by

s∗(s) =

∫ ∥∥∥∥d~m(s)

ds

∥∥∥∥ ds =

∫
cosh s ds = sinh s,

which is (1.31). This implies

s = Arsinh(s∗) = log
(
s∗ +

√
(s∗)2 + 1

)
= ψ∗(s∗).

Substituting this in (1.29) and observing that cosh s =
√

1 + (s∗),
we obtain (1.32).
Since ~m ∗(s∗) = ~m(s(s∗)), an application of the chain rule and (1.37)
and (1.23) together yield

16
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~v ∗1 (s∗) =
d~m ∗(s∗)

ds∗
=
d~m(s(s∗))

ds

ds(s∗)

ds∗
=

cosh (s(s∗))~v3(s(s
∗))

1

cosh (s(s∗))
={

s∗√
1 + (s∗)2

cos (ψ∗(s∗)),
s∗√

1 + (s∗)2
sin (ψ∗(s∗)),

1√
1 + (s∗)2

}
which is (1.33).
Since ~v1(s

∗) = ~v3(s(s
∗)), and application of the chain rule and (1.26)

together yield

~̇v ∗1 (s∗) =
d~v3(s(s

∗))

ds

ds(s∗)

ds∗

=
1

cosh2 (s(s∗))

(
1

cosh (s(s∗))
{cos (ψ∗(s∗)), sin (ψ∗(s∗)),−s∗}

+ {−s∗ sin (ψ∗(s∗)), s∗ cos (ψ∗(s∗)), 0})

=
1

1 + (s∗)2

(
1√

1 + (s∗)2
{cos (ψ∗(s∗)), sin (ψ∗(s∗)),−s∗}

+ {−s∗ sin (ψ∗(s∗)), s∗ cos (ψ∗(s∗)), 0}) .

Now we obtain the curvature κ∗(s∗) of γm at s∗ from

(κ∗(s∗))2 = ‖~̇v ∗1 (s∗)‖2

=
1

(1 + (s∗)2)2

(
1

1 + (s∗)2
(1 + s2) + (s∗)2

)
=

1

(1 + (s∗)2)2 (1 + s2) =
1

1 + (s∗)2
,

which yields (1.36).
Furthermore, we obtain (1.34) from

~v ∗2 (s∗) = ~̇v1(s
∗)

1

κ∗(s∗)
.

Since

~a(s∗) = {s∗ cos (ψ∗(s∗)), s∗ sin (ψ∗(s∗)), 1}
× {cos (ψ∗(s∗)), sin (ψ∗(s∗)),−s∗}

=
{
−(1 + (s∗)2) sin (ψ∗(s∗)), (1 + (s∗)2) cos (ψ∗(s∗)), 0

}
= (1 + (s∗)2){− sin (ψ∗(s∗)), cos (ψ∗(s∗)), 0},

~b(s∗) = {s∗ cos (ψ∗(s∗)), s∗ cos (ψ∗(s∗)), 1}
× {− sin (ψ(s∗)), cos (ψ(s∗)), 0}

= {− cos (ψ∗(s∗)),− sin (ψ∗(s∗)), s∗}

and

~v ∗3 (s∗) =
1(√

1 + (s∗)2
)3 ~a+

s∗

1 + (s∗)2
~b,

we obtain (1.35). �

Figure 12 Surface generated by
the osculating planes Figure 13 Envelope of

the osculating spheres
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1.6 Geodesic Lines on the Pseudo-Sphere

Here we determine the geodesic lines on the pseudo–sphere with a
parametric representation (1.16), which are given by the differential
equations

üi +

{
i
jk

}
u̇iu̇k = 0 for i = 1, 2, (1.38)

where

{
i
jk

}
(i, j, k = 1, 2) denote the second Christoffel symbols,

and summation is carried out in (1.38) with respect to 1 ≤ j, k ≤ 2.

Proposition 1.12 Let (u1
0, u

2
0) ∈ (0,∞) × (0, 2π) be given. Then

the u1–line corresponding to u2
0 is a geodesic line. Furthermore, if

Θ0 ∈ [0, 2π)\{π/2, 3π/2} then the geodesic line through (u1
0, u

2
0) with

an angle of Θ0 to the u2–line through (u1
0, u

2
0) is given by

u1(s) = − log (|δ| cosh (s+ s0)) and u2(s) =
1

δ
tanh (s+ s0) + c1

(1.39)
where

δ = cos Θ0e
−u1

0 , c1 = u2
0 + eu1

0 tan Θ0and s0 = log

(√
1− sin Θ0

1 + sin Θ0

)
.

(1.40)

Figure 14 A geodesic
line

Figure 15 Families of geodesic
lines on a speudo–sphere

Proof. Since the first fundamental coefficients for the pseudo–sphere
are

g11(u
i) = g11(u

1) = 1, g12(u
i) = 0 and g22(u

i) = g22(u
1) = e−2u1

,

we obtain the second Christoffel symbols{
1
11

}
=

1

2g11(u1)

dg11(u
1)

du1
= 0,{

1
12

}
=

{
1
21

}
= 0,{

1
22

}
= − 1

2g11(u1)

g22(u
1)

du1
= e−2u1

,{
2
11

}
= 0,{

2
12

}
=

{
2
21

}
=

1

2g22(u1)

dg22(u
1)

du1
= −1

and {
2
22

}
= 0,

and the differential equations (1.38) reduce to

ü1 + e−2u1 (
u̇2
)2

= 0 (1.41)

and
ü2 − 2u̇1u̇2 = 0. (1.42)

If u̇2 = 0 then we obtain a u1–line corresponding to u2 = u0
2, that is,

for a suitable orientation of the arc length

u1 = s+ u1
0 and u2(s) = u2

0 for s > −u1
0.
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Now we assume u̇2 6= 0. Then (1.42) yields

ü2

u̇2
= 2u̇1, that is u̇2 = δe2u1

for some constant δ 6= 0. (1.43)

Substituting this in (1.41), we obtain

ü1 + δ2e2u1

= 0, that is
d

ds

((
u̇1
)2

+ δ2e2u1
)

= 0,

hence(
u̇1
)2

= d2 − δ2e2u1

for some constant d 6= 0 and u1 < log

∣∣∣∣dδ
∣∣∣∣.

This yields

u̇1 = ±
√
d2 − δ2e2u1 for u1 ≤ log

∣∣∣∣dδ
∣∣∣∣. (1.44)

and

I =

∫
du1

√
d2 − δ2e2u1

= ±(s+ s0) for some constant s0.

To evaluate the integral I(u1), we substitute x = |δ|eu1
and obtain

I =

∫
dx

x
√
d2 − x2

= −1

d
log

(
d+

√
d2 − x2

x

)
− 1

d
log

(
d+

√
d2 − δ2e2u1

|δ|eu1

)
,

hence (
|δ|eu1

e(∓d(s+s0)) − d
)2

= d2 − δ2e2u1

and

eu1

=
2de(∓d(s+s0))

|δ| (1 + e(∓d(s+s0)))
=

d

|δ| cosh (d(s+ s0))
. (1.45)

Therefore we have

u1(s) = log

(
d

|δ| cosh (d(s+ s0))

)
for all s ∈ IR,

since cosh (d(s+ s0)) ≥ 1 for all s implies u1(s) ≤ log |d/δ| for all s.
Now it follows from the identity on the right hand side in (1.43) and
(1.45) that

u̇2 =
d2

δ cosh2 (d(s+ s0))
,

and so

u2 =
d

δ
tanh (d(s+ s0)) + c1 for some constant c1.

Furthermore, since s is the arc length along the geodesic line, it
follows from (1.44) and the identity on the right hand side in (1.43)
that

g11(u
1)(u̇1)2 + g22(u

1)(u̇2)2 = d2 − δ2e2u1

+ δ2e2u1

= d2 = 1,

hence d = ±1. Therefore, the general solution of the differential
equations (1.41) and (1.42) is

u1(s) = − log |δ| cosh (s+ s0))

and

u2(s) = ±1

δ
tanh (±(s+ s0)) + c1 =

1

δ
tanh (s+ s0) + c1.

Thus we have shown the identities in (1.39).
Now we determine the constants δ, s0 and c1 such that the initial
conditions are satisfied. Let ~x ∗(s) be a parametric representation of
the geodesic line. Then it follows from

~̇x ∗(0) • ~x1(u
1
0)

‖~x1(u1
0)‖

=
√
g11(u1

0)
du1(0)

ds
= − tanh s0 = sin Θ0,
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that

s0 = Artanh(− sin Θ0) =
1

2
log

(
1− sin Θ0

1 + sin Θ0

)
,

which is the third identity in (1.40). Furthermore,

~̇x ∗(0) • ~x2(u
1
0)

‖~x2(u1
0)‖

=
√
g22(u1

0)
du2(0)

ds
= e−u1

0δe2u1
0 = cos Θ0

implies δ = e−u1
0 cos Θ0, which is the first identity in (1.40). Finally

u2
0 =

1

δ
tanh s0 + c1

yields

c1 = u2
0 + sin Θ0

eu1
0

cos Θ0

= u0 + eu1
0 tan Θ0,

which is the second identity in (1.40). �
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