ORIGIN OF VANADYL PORYHRINS IN PETROLEUM:

LA LUNA SHALY-LIMESTONES AND RELATED PETROLEUMS

Pavle I. Premovic

Department of Chemistry, Faculty of Science
University of Niš, 18000 Niš, Yugoslavia

ABSTRACT

Geochemical evidence for the La Luna shaly-limestones (the Maracaibo region, N. W. Venezuela) and related petroleums are inconsistent with generally accepted view that vanadyl porphyrins in petroleum are indigenous. The alternative is selective extraction of vanadyl porphyrins by degraded petroleum migrating through a sedimentary stratum containing these pigments.

INTRODUCTION

During 1933 research effort headed by the German chemist Alfred Treibs at the Technische Hochschule of Munich probably marks the first modern study of molecular geochemistry and it had tremendous impact and far-reaching consequences for geology and earth sciences. In that year Treibs identified the major metalloporphyrins in carbonaceous shales (Treibs, 1934a) and later in petroleums (Treibs, 1934b): vanadyl (VO2+) deoxophyloerythroetiohporphyrin (DPEP). Treibs concluded that by this identification "the proof that chlorophyll-bearing plants played a decisive part in the formation of bitumens and petroleums of various origins and of geologic ages is brought with full certainty" (Treibs, 1934b). Following this discovery after working with a very wide sampling of carbonaceous shales and petroleums Treibs also put forward his famous postulate for the transformation of chlorophyll a into DPEP (Treibs, 1936). Since that time, extensive investigations have been made of porphyrin occurrence in the geologic materials because they provide information on the geologic transformation of chlorophyll.

In this paper, the attention is focussed on VO2+ porphyrins in: the Upper Cretaceous La Luna shaly-limestones and associated petroleums of the Maracaibo region in N. W. Venezuela. Its purpose is to explore the origin of VO2+ porphyrins in these deposits in such manner that some light may be shed on the question of their origin in petroleum, in general. In essence, the question is: are VO2+ porphyrins indigenous or introduced constituent of petroleum?
Stratigraphy and petrology

As well-defined structural unit, the Maracaibo basin (Fig. 1) came into existence toward the end of Eocene. The stratigraphic sequence from the general Maracaibo region is summarized in the stratigraphic column, Fig. 2. The stratigraphy and petrology have been described in many papers (Hedberg, 1931; Liddle, 1946; Smith, 1951).

Fig. 1. Sketch of the Maracaibo region, N.W. Venezuela.

Fig. 2. Stratigraphic column: the Maracaibo region.
The following discussion considers only the La Luna limestones of the Cretaceous age, and adjacent formations in the Maracaibo area. The general character of this part of the stratigraphic section, may be briefly summarized as follows: the La Luna formation "is typically a thin-bedded to finely laminated, black shaly or cherty, foraminiferal (planktonic) carbonaceous-bituminous limestone" of Cretaceous (Coniacian and Turonian stages) that has been deposited in a deeper marine anoxic environment (Hedberg, 1931). Source beds of this formation are believed to have generated the major part of the Cretaceous petroleum produced in this area: La Concepcion, Sibucara, La Paz, Mara and Boscan (Hedberg, 1964). The La Luna deposit rests conformably on the Cogullo (hard, massive) limestones and in contact with either the Colon (dark gray) shales or Tertiary sandstones above.

Bacterial activity, maturity and VO₂⁺ porphyrins

According to a geochemical study of the La Luna limestone samples (in the well and outcrop sections) of the Maracaibo area by Gransch and Eisma (1966) the organic carbon contents of these samples ranged from approximately 0.1 to 15%. It is generally agreed that the organic matter of the La Luna limestones of Maracaibo is derived mainly from plankton and/or bacteria decomposition products (Premović et al., 1986). The most distinctive feature of these bituminous rocks is their high content of VO₂⁺ porphyrins, as much as 4% or even higher (Gransch and Eisma, 1966).

Paleobiological observations (Hedberg, 1931; Liddle, 1946; Smith, 1951) and geochemical data (Didyk et al., 1978; Premović et al., 1986) suggest that the La Luna limestones of Maracaibo were laid down in shallow-sea environment under anoxic sedimentation conditions with slow (at a rate of ca. 2.7 mm a⁻¹) (Visser, 1982) and prolonged stable deposition. Under such conditions relatively fresh organic materials become available for bacterial sulfate reduction (Westrich, 1983). In such depositional environment with relatively high bacterial activity, porphyrins (derived from phytoplanktons and photosynthetic bacteria) (Premović et al., 1986) and other resistant organic materials (e.g., biolipids) may survive forming the high molecular weight residue. This residue, which is not directly used by microorganisms, becomes then incorporated into new geopolymeric insoluble structure: kerogen. Thus, we suggest that extensive bacterial activity in the La Luna depositional environment of Maracaibo could account for the high VO₂⁺ porphyrin content of the La Luna limestones. As a result of this activity we might expect relatively high VO₂⁺ porphyrin content in both the organic extractable and kerogen fractions of the La Luna limestones with the low state of diagenetic maturity.

The petrographic (Hedberg, 1931; Liddle, 1946; Smith, 1951) and geochemical (Gransch and Eisma, 1966; Didyk et al., 1975) analyses suggest that the La Luna limestones in the outcrop sections have undergone little diagenetic maturation. Hence, the VO₂⁺ distribution is interpreted in terms of the original source material and subsequent diagenetic processes, although minor rearrangements and degradations occurring during the 120 million year history of the sediment may also have occurred.

Premović and coworkers (Premović et al., 1986) have analysed the La Luna limestone outcrop sample using various chemical techniques and methods, which include elemental and infrared analyses, quantitative emission and atomic absorption (AA) spectrocopies, electron spin resonance (ESR), ultraviolet (UV) and visible (VIS) spectrophotometry, electron microscopy and microprobe analysis and solvent extraction. The rock sample used in this study has approximately 6% of organic carbon by dry weight. Kerogen accounts for more than 90% of the total organic matter, Table 1. This kerogen contains 49.8% carbon, 5.3% hydrogen, 1.6% nitrogen and 8.3% sulfur. The kerogen H/C ratio of 1.3 indicates the aliphatic nature of this material and, again, the low state of diagenetic maturity. Although analytical data obtained from outcrop make interpretation somewhat difficult, we consider that the sample analysed contains largely type II kerogen (Tissot and Welte, 1978).
Degraded petroleum, asphalt and VO2+ porphyrins

According to recent geochemical study by Bockmeulen et al., (1983) the Maracaibo oils show classical sequence of (bio- and water- degradation and range from light (non-degraded) oils (40° API) to heavy (highly degraded) oils (less than 22° API). This is supported by geologic evidence; the widespread occurrence of continental facies, erosional features, and numerous faults exposing structures promoted the oxidative degradation of the Maracaibo oils. The heavy oils of this region are also associated with meteoric waters (Miller et al., 12958). Bockmeulen et al. (1983) and other petroleum scientists (Hedberg, 1931; Liddle, 1946; Smith, 1951; Hedberg, 1964) have provided evidence that these heavy (asphalt-rich) oils developed from lighter (alkane-rich) oils and that the Maracaibo crude oils belong to one major family and have a common origin.

The most striking feature of the Boscan petroleum (17.2° API) is the high asphalt content: 47.4% (Erdman and Harju, 1963). Erdman and Harju (1963) have found that this heavy (highly degraded) oil contains relatively high concentration of vanadium: 1134 ppm with 70% of the total vanadium incorporated into the asphaltic fraction (asphaltenes and resins). Their UV-VIS analysis indicated the presence of the VO2+ porphyrins in this petroleum: 3700 ppm with 97% of the total VO2+ located in the asphaltic fraction.

In contrast to the Boscan crude, the Mara petroleum (28.4° API), as a moderately degraded oil, has relatively low asphalt content: 13.2%. This oil shows vanadium pattern similar to that observed for the Boscan oil, although the elemental vanadium concentration in the Mara petroleum is lower (2108 ppm) with 74% of the total vanadium located in the asphaltic fraction. The Mara crude yielded only 590 ppm of the VO2+ porphyrins with 90% of the total VO2+ porphyrins located in the asphaltic fraction. On the other hand, light (non-degraded) oils, higher than 35° API with less than 2% of asphaltic components, the Concepcion and Sibucara oils yielded less than 1 ppm of VO2+ porphyrins (Premović, 1983).

In conclusion, it seems evident in the light of geochemical evidence that the origin of both VO2+ porphyrins and vanadium is related to the origin of asphaltic components of the Maracaibo petroleums. Close relation between: petroleum asphaltic fraction and vanadium was first reported by Hodgson (1954) in his study of the Western Canada oils, and petroleum asphaltic fraction and VO2+ porphyrins was first reported by Skinner (1952), since then many other examples have been documented by other workers. In the light of the suggested relation of both VO2+ porphyrins and vanadium to petroleum asphaltic components of the Maracaibo crudes, the following quotation (from the study of trace element constituents of the California oil including VO2+ porphyrins and vanadium) from Filby (1975) is of particular interest: “the observation that trace elements observed in the California oil occur in oil-soluble form and are predominantly associated with the asphaltic components of the oil (except As) suggests that the origin of the trace elements is related to the origin of the asphaltenes and resins.”

Asphalitic fraction and VO2+ porphyrins

Sugihara et al. (1970) have separated a number of VO2+ porphyrins from the Boscan crude oil and concluded that VO2+ porphyrin molecule are associated with large asphaltic molecules. Other evidence for the association of VO2+ porphyrins with high molecular asphaltic constituents of the Boscan and other petroleums were reported by Yen et al. (1969).

According to these authors, there are two types of VO2+ porphyrins in petroleum: one free and the other bound. The bound state can undergo transition to the free state upon the addition of free energy (10-14 kcal) either from the polarity of solvent (e.g., tetrahydrofuran) or the temperature system used. These results imply that the bound VO2+ porphyrin can be visualized as due to association of the (free) porphyrin entity with other relatively extensive molecular system fixed or bound to asphaltic host through the charge transfer (Yen, 1969); Yen et al., 1969; Yen, 1973) and/or the hydrogen bonding (Mckay et al., 1978). It is believed that this
porphyrin entity is either predominant monomeric VO2+ porphyrin or much less abundant: the multi-aryl substituted or fused porphyrin (Yen et al., 1969).

Many colloidal characteristics of petroleum (e.g. gel-sol conversion, micelle stability) may be explained on the basis of these association properties of individual systems throughout the asphaltic macrostructure (Yen, 1973). Consequently, it is clear that these (inter- and intra-) associations affect geochemistry and genesis of petroleum and its polar components such as VO2+ porphyrins as well.

Kerogen, asphaltic molecules, VO2+ porphyrins and petroleum

It is now widely accepted that the most petroleum hydrocarbons are generated from kerogen, which generally occurs finely disseminated in fine-grained sedimentary rocks. The transformation process from kerogen to petroleum or thermal maturation, is accelerated by the combined effects of increasing temperature and heating time, which is usually related to increasing depth of burial.

In a first stage, corresponding to diagenesis, the transformation of organic materials continues by means of biological processes as the materials are buried at depths up to 100 m and reaches temperature of 333 K or less. During this stage the most of rather large molecules with heteroatoms (O, S, N) are released, such as asphaltic molecules and VO2+ porphyrins. In the light of geologic evidence the first thousand meters of the overlying Colon sedimentary rocks were laid down on the La Luna deposits of Maracaibo on the end of the Upper Cretaceous period (Senonian stage) (Mencher et al., 1953).

Deeper burial, due to further accumulation of sedimentary overburden, tectonic activity, or both, increases temperature of the sedimentary rock and its included organic matter. The term "catagenesis" is applied to transformation occurring between approximately 333 K and 423 K, depending of the geologic age of the rock (Tissot and Welte, 1978). Very obviously some VO2+ porphyrins produced during diagenesis might be thermally transformed and/or degraded during catagenesis. This temperature range corresponds to the burial depths of ca 2000 m to 5000 m for the La Luna limestones of Maracaibo (Didyk et al., 1975; Visser, 1982). The "principal zone of petroleum formation" (Vasoevich et al., 1966), lies within this temperature range. Mobile (alkane-rich) organic mixture (petroleum) is produced in this zone. Geologic evidence indicate that petroleum was generated in the La Luna deposits of Maracaibo from Eocene time onward (Hedberg, 1964; Zambrano et al., 1972; Bockmeulen et al., 1983; Blaser and White, 1984). Moreover, according to Visser (1982) the La Luna kerogen of Maracaibo started to expel the first hydrocarbon liquid- petroleum about 4 Ma. If the above kerogen-petroleum concept is correct then it is difficult to escape the conclusion that VO2+ porphyrins (and other vanadium compounds) are more likely an introduced rather than indigenous constituent of the Maracaibo petroleums.

Petroleum degradation and VO2+ porphyrins

McKay et al. (1978) have made a special study of deasphalting phenomenon of petroleum and concluded that "petroleum is a delicately balanced mixture of compounds that depends upon each other solubility." According to these authors, two factors primarily responsible for maintaining the mutual solubility of the petroleum components in the petroleum mixture are: the ratio of polar to non-polar components and the ratio of high molecular to low molecular components. Thus, the low solubility of highly polar VO2+ porphyrins (and other vanadium compounds) in light (non-polar, alkane-rich) petroleum might be responsible for their low concentrations in the Conception and Sibucara oils.

By the degradation petroleum composition is changed as a result of bacterial and water activities. This process by removal of (non-polar, low molecular weight) saturates entails a relative enrichment of both polar and high molecular weight components. Very obviously petroleum would become
progressively enriched in asphalitic components with the passage of time since each cycle of degradation should reduce the saturate content and enrich petroleum asphalitic components. As a consequence an alteration of the crude oil occurs from a non-polar to polar base. Thus we suggest that light petroleum and highly polar VO²⁺ porphyrins are essentially immiscible as long as a suitable ratio of polar to non-polar components in petroleum is maintained. When the ratio is altered by the degradation, polar molecules (such as VO²⁺ porphyrins) are then more soluble and more accessible to petroleum.

Like the degradation the VO²⁺ porphyrins' enrichment might take place during the petroleum migrating phases and/or in reservoir. The Concepcion and Sibucara oils are entrapped within the Cretaceous Cogollo limestones relatively rich in VO²⁺ porphyrins (Grausch and Eisma, 1966). However, the fact that the Boscan oil is entrapped with the Eocene reservoir which contains no VO²⁺ porphyrins (Grausch and Eisma, 1966) renders the reservoir interpretation less probable.

According to Bockmeulen et al (1983), the degradation of the Maracaibo oils did occur during their migration. Thus we suggest that a migrating mixture of hydrocarbons, primary (light, non-polar and non-degraded) petroleum (such as the Concepcion or Sibucara oils) altered by bacterial and water activities is transformed into the secondary (heavy, polar and degraded) petroleum (such as the Boscan oil). This degraded petroleum is enriched (and affected) by the constituents adsorbed by its asphalitic components (such as vanadium) and the constituents accumulated by its asphalitic components (such as VO²⁺ porphyrins). Different intensities of degradation, different durations, different migration pathways and reservoirs (with different mineralogical and chemical compositions) leave crudes exhibiting different abundances of both VO²⁺ porphyrins and vanadium. Obviously, some increase in VO²⁺ porphyrins (and vanadium) is to be expected, of course, because VO²⁺ porphyrins (and vanadium) are concentrated by removal of alkanes. However, the amount of alkanes lost should not exceed 25% of the original amount of oil and the actual loss of material from the oil is probably less (Winters and Williams, 1969). Even this amount of concentration is far from sufficient to explain a thousandfold (or even higher) increase in VO²⁺ porphyrins (and vanadium) (the Boscan vs. the Concepcion or Sibucara oils). A large portion of VO²⁺ porphyrins (and vanadium) present in highly degraded Boscan oil must be related to its asphalitic components. The close association of both VO²⁺ porphyrins and vanadium with asphalitic components of the Boscan oil and their relative abundances suggest a cause-and-effect relationship.

Direct evidence supporting our concept is provided by Erdman and Harju (1963). These authors demonstrated that the adsorption of vanadium in the Boscan and Mara asphalitic fractions occurred during asphalitic genesis. Indirect support is given by Gulyaeva and Lositskaya (1967) showing that the vanadium uptake would only occur when the oil contained asphalitic fraction.

Petroleum and non-indigenous VO²⁺ porphyrins

Conventional chlorophyll-based mechanism of VO²⁺ porphyrin genesis in petroleums (Treibs, 1936; Baker and Palmer, 1978) carries with it several assumptions, corollaries and consequences. Among the most important is the implicit assumption that VO²⁺ porphyrins are indigenous to petroleums although some researchers (Radchenko and Sheshina, 1955; Hodgson et al., 1963; Grausch and Eisma, 1966) have cautioned against such a blanket assumption pointing out that, at least, some of the petroleum VO²⁺ porphyrins might be secondary components. As a consequence the presence of VO²⁺ porphyrins in petroleums is taken as an evidence which incontrovertibly supports an origin of common petroleums from the remnants of living organisms and at the same time to oppose an inorganic origin.

While it has been established that the generation of VO²⁺ porphyrins during the petroleum migration is unlikely (Park and Dunning, 1963), little or not consideration has been given to the effect of VO²⁺ porphyrin accumulation during the migration (Hodgson et al., 1963). Although the
mechanism and mode of petroleum migration are not well understood (Tissot and Welte, 1978), it is clear that petroleum, as a mobile fluid, may migrate (and be degraded) along bedding planes in sedimentary deposits containing VO²⁺ porphyrins dissolved these compounds and, thus, enriched itself. Granich and Eisma (1970), as a result of a research of VO²⁺ porphyrins in the La Luna and Cogollo limestones from Maracaibo, suggested such a possibility by stating: "Porphyrin/vanadium complexes are soluble in crude oil... Migrating oil has to pass several layers before it arrives in reservoir rock..."

Finally, in the discussion of origin of metalloporphyrins in the Athabasca oil sands Hodgson et al., (1963) stated: "For accumulation processes, migration through a sediment rich in vanadyl porphyrins (characteristic of near-shore, highly reducing sediment) would favor a dominance of vanadyl pigments over nickel pigments in the final crude oil." According to Sigihiara and Bean (1963) VO²⁺ porphyrins do dominate over nickel porphyrins in the Boscan and Mara oils.

At the present it is without doubt that VO²⁺ porphyrins of the Maracaibo oils originated in the Cretaceous La Luna and Cogollo limestones enriched with these compounds (Granich and Eisma, 1966; Premovic, 1984; Premovic et al., 1986). The question is: how and at what stage VO²⁺ porphyrins were introduced in these crude oils. These pigments may have originated in petroleum of Maracaibo in two ways: (a) through uptake from the La Luna and Cogollo limestones during petroleum migration; or, (b) from formation waters. It is unlikely that VO²⁺ porphyrins will be introduced via formation waters. These waters contain no appreciable amount of VO²⁺ porphyrins (Hodgson et al., 1963; Yen, 1975; Filby, 1975). Moreover, formation waters contain oxygen (Bockemeulen et al., 1983), and it is known that VO²⁺ porphyrins undergo degradation in the presence of this agent (Constantinides and Batti, 1957; Hodgson et al., 1963; Falk, 1964; Yen, 1973). This fact also indicates that the VO²⁺ porphyrin enrichment of the Maracaibo oils did not occur before or during their (bacterial and water) oxidative degradation but after this process had taken place.

Thus it appears reasonable to conclude that geochemical evidence support our view that VO²⁺ porphyrins of the Cretaceous oils from Maracaibo are more likely an introduced rather than indigenous constituent of these petroleum. In our opinion, the process responsible for this introduction is selective extraction of VO²⁺ porphyrins present in the La Luna and Cogollo limestones by degraded petroleum during their migration.

Conclusion
Although no petroleum are exactly alike chemically, each petroleum is a distinct and extremely complex mixture of organic compounds there is a similarity within given homologous series of VO²⁺ porphyrins among various crude oils, even though they have been produced from widely different environments and in widely different geologic eras (Baker and Palmer, 1978). For this reason, we believe that some common and universal process must have operated that selectively generated VO²⁺ porphyrins in petroleum. We suggest, by analogy with the origin of these compounds in the Cretaceous oils from the Maracaibo region in N.W. Venezuela, that this process is selective extraction of VO²⁺ porphyrins by degraded petroleum from any sedimentary rock system containing these compounds through which this petroleum had passed on its way to the trap structures. The fact that VO²⁺ porphyrins are, generally, absent or they account for only trace of organic carbon present in non-degraded oils lends support to such a notion.

Thus, in conclusion, it is likely that VO²⁺ porphyrins present in most petroleum are non-indigenous in nature. It is clear that in some crude these compounds might be of primary origin but this is difficult to verify by any direct or indirect method, and as far as we are aware no evidence has been ever presented for any petroleum containing VO²⁺ porphyrins to support such a notion. One direct consequence of this fact is that VO²⁺ porphyrins are not reliable geochemical tracers for petroleum, and their
presence in petroleums is not an evidence supporting a biological origin of common petroleum.

Acknowledgement. This work is supported by the Republic Science Association of Serbia, region of Niš (P-32/83).

REFERENCES

