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MO expressions for the g-values of octahedral d! system with a relatively strong trigonal
distortion, D3qs, Dy and Cy, symmetries, are derived in terms of a d,s ground state neglect-
ing the contributions of charge-transfer terms. For the Ti(H20)3+ complex ions in

frozen aqueous solutions, where we assume that the metal-ligand bonding is rather ionic,
this MO treatment is shown to be equivalent to that of the crystal field and offers a plau-
sible interpretation for the recently published ESR g-values. This is demonstrated within
the point-charge formalism by correlating theoretical g1 — values with the angular dis-
tortion parameter 0.

INTRODUCTION

ESR studies of paramagnetic transition-metal complexes yield infor-
mation about the distribution of the unpaired electrons and hence about
the nature of the bonding between the metal ion and its ligands. There
have been many reports concerning the application of ESR to trigonally
distorted octahedral compounds of Ti(III), and of the interpretations
of the ESR parameters in terms of crystal field parameters and the cova-
lency of the metal-ligand bonding. Shifts of g-values from the free elec-
tron value as a measure of spin-orbit mixing of antibonding states into
the ground state varies remarkably from compound to compound, for
example, the g-values of titanium (III) acetylacetonate approach the free
electron value while those of cesium titanium (III) alum show apprecia-
ble deviation from that value. The spin-lattice relaxation time also varies
considerably from one system to another. In some cases the ESR could
be observed only at liquid helium temperature, e.g. cesium titanium (IIT)
alum while that of titanium (III) acetyl acetonate is readily observed
at room temperature.

The ground state of a 3@* ion such as Ti (IIT)is 2D, separated in the
free ion by a rather large energy, 80378 em~! from the first excited state
(the 3d* —4s!) transition.! An ideal octahedral erystal field, 0, symmetry,
splits the 2D state into a low lying 27, state and an upper 2E, state.

! C. E. Moorg, “Atomc Energy Levels”’, US Bur. Stand. Cire. No. 467, 1964.
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If the octahedron is distorted along the trigonal axes, the symmetry
of the complex molecule is lowered from O, to Dg;, D; or (s, ; in all
three cases the threefold degenerate level T, in O, splits into one single
and one twofold degenerate level. The twofold level E,, in 0,, however,
remains degenerate. The correlation diagram for d' ion in the trigonal
crystal field is given in Figure 1,

The crystal field expressions for the g-values of octahedral Ti (I1T)
complexes with some trigonal distortion have been discussed by Bleaney,?
Jarrett, * Gladney and Swalentand McGarvey®

Es EgB in terms of a di(= d,) ground state. Ray® also

| / considered this problem and derived expressions
A I for the g-values in the presence of a crystal field
of trigonal symmetry and covalent bonding. He
expressed the g-values asa function of two pa-
rameters (P and @ in his terminology) in such
a fashion that the quantitative estimates of
the relative importance of the crystal-field

EA Egh parameters and the influence of covalent bond-
\ / ing are difficult to make. Interpretation of
Vo g g-values in terms of these parameters does
=" little to further chemical insight. McGarvey 7
N K . presents equations for the g-values which are

' e only an extension of the work of Ray and which
include the effects of covalent bonding on the

DgeCg, Oy Day second order terms.
Fig. 1. — Splittings under tri- In the ﬁrst pa,rt Of this paper, we derive
gonal distortion. expressions for the g-tensor in terms of MO

expansion coefficients for octahedral d' systems
with a relatively strong trigonal distortion which have charge transfer
bands at mueh higher energy than d—d bands. This is done in order to
illustrate the importance of certain terms which have usually been neglected
in the past. In the second part, we attempt to show the sensitivity ofthe
g, -values to small angular departures from octahedral symmetry in trigo-
nal systems. As an example we use the Ti(H,0)}+ complex ion in frozen
aqueous solutions in which we assume that the covalency plays a minor
role, In this case the MO formula for the g, -value developed in the first
part reduces to a relatively simple expression. Employing this expression
and the point-charge calculation of Gerloch and coworkers, 8 theoretical
g;-values are obtained for this system. The following abbreviations will
be used : CF = crystal field, PC = point-charge, and CT = charge trans-
fer.

2 B. BLEANEY, Proc. Phys. Soc. (London), A63, 407 (1950).

3 B. H. S. JarrETT, J. Chern. Phys., 42, 1999 (1965).

4 B. H. S. GuapNEY and J. D. SwavLgN, J. Chem. Phys., 42, 199 (1965).

5 B. R. McGarvey, Transifion Metal Chem., 3, 89 (1966).

6 D. K. Ray, ‘“Soviet Phys.-Solid State”’, 3, 1838 (1962). See also Nuovo Cimento,
21, 1 (1961).

? B. R. McGaRrvEY, J. Chem. Phys., 38, 388 (1963).

8 M. GeRLocH, J. LEwis, G. G. Puirips and P. N. QUEsSTED, J. Chem. Soc. (4A), (1970),
1941.
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THE PRINCIPAL COMPONENTS OF THE ¢-TENSOR IN A TRIGONAL d' SYSTEM *

We shall consider a one electron-system, with the electron in the
@ orbital, so that the ground state is A},. Only states of E, symmetry can
mix with ground state under perturbation of the angular momentum ope-
rator so that we need consider only MO’s belonging to the representation
a,, and ¢,. The coordinate axis system is shown in Figure 2. The 2 axis
is chosen as the threefold axis. If the angle 0 is defined as the angle be-
tween any bond and the principal rotation axis 2, then a trigonal squash
occurs when 6 > 54.75° (= 0O.:, the angle
in 0, symmetry) and a trigonal elongation
when 0 < 54.75°. The relevant antibonding N
MO’s can be written down as:

Gy = 0‘1" @ — “: D (ay,) (1)
614 = ayds_» — bd,, — ﬁ;“d)(e, 14) (2)

N
=<

6,24 = ayd,, + by, — Y¥®(6,24)  (3) ed 2
6y 1B = bydun_ys + agd,, — 35 ® (¢, 1B) (4) \ /

¢, 2B = b,d,y — a,d,, — < (6, 2B) (5) X

where the metal orbitals are the usual d func-
tions, and the ligand functions, ®, are
group orbitals (or set of group orbitals) of appropriate symmetry.**

Natice that Ray® preferred to use as the metal orbitals the linear
combinations

Fig. 2. — Definition of axes.

Symumelry Melal Orbital
aly d,
eg A ad, — bd_4
ad_, + bdy
ey B bdy + ad_,
bd_,—ady

wjth the orthongrmality condition a?+4 b2 = 1. However, metal orbitals
given by expressions (1) — (5) are found to be particularly convenient and

simple here since matrix elements such as <d|H,| d> and <d|Al,| d> can

be more readily evaluated using table A.1. in Appendix A. Clearly, the

gwo Wailys :ifl writing the metal orbitals are equivalent and supplementary
o each other.

* Although we are dealing in our treatment with the D,z system, the results are
applicable for the D, and C;, systems. Note that in these cases the proper notation
ought to be used (Figure 1).

_"* The wavefunctions (1)—(5), which describe MO’s, will represent the states (denoted
by capital letters) arising from the occupancy by the d! electron.
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We now proceed to derive expressions for the principal g, and g,
components of the g-tensor in our trigonal d' system. To first order, the

two %round-state spin functions in the presence of spin-orbit interaction
will be

-— + —
a:l‘; =Ai’; . <Ea lA!Hla]Ala> E,— 14 — <Ev 1B|Hls|Ai+¢'z> En— 1B —
AE(A,, — E, A) AE(A,, — E, B)
— + .
_ B A AL oy (B 2BIHLAD) pop o
AE(4,, — E, 4) AB(A,,— B, B)
+ - —
wiy = A — SEE VAU AG) gy ) CESABIHGARY pyyp
AE(A,, - E,A) AE(A,, —~ E,B
___<E:2AIHIJIA1-0> E+2A_<E;2BIH18;AL‘I> E;. 2.B (7)

AE(A,, -~ E,4) '’ AE(4,, — E,B)

where AE(4,, - E,A) and AE(A,, - E, B) are the energies of the E,4
and E, Bd — d excited states. Before proceeding any further, it is usetul
to calculate the matrix elements in expressions (6) and (7).

The most general expression for the spin-orbit coupling operator,
H,, in the one-electron case is

A 6 A
Hy, = hg(ra) ba + Y (r) I § (8)
L=1

where 7, is the distance of the unpaired electron from the nucleus ¥ = M,
L(=1 — 6), where the subscripts M and L denote the metal and the appro-

priate ligand atom, respectively ; lA,c is the orbital angular momentum ope-
rator for the unpaired electron centred on nucleus k; and 2i(r;) is the
atomic spin-orbit coupling constant for the appropriate orbital of atom k.

The operator 1-1 is written as

1o6=18410,8 +18 (9)

The functions obtained by the operation of the I-§ operator are
given in table A.1 (Appendix A).

Now we are in position to evaluate the various matrix elements in
expression (6). Consider first the integral ( E; 14 |H,|A{,>, where the
E;14 is a d—ad excited state with the electron in the ¢, 14 antibonding
MO as given by (2). Writing this integral out i¢n extenso, we have

oy da-p — bda — BT O (6 LA) | Hyy | of d5 — 0@ (ay,) > (10)

Since A, is proportional to r;® for hydrogen-like wavefunctions it
seems reasonable to suppose that only one-center integrals of the type
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<Y ne(re) lkél ¢ >are significantly different from zero. There are only two
terms to consider, given by (11) and (12).

—bady (e | Jarl7ae) lAM $ldy (11)

ok BE (D (e, 14) | 2i(rs) Iy - 8] D*(ay,) D (12)
The first of these (11) is simply equal to

V3

Tbla’f A\v. Equation (12), after expansion of the ligand group orbitals,*

is found to be zero.
We thus end up

— (B 141 Bl 45> =134, 1, (13)

Similarly, we evaluate the rest of the integrals in equations (6)and
(7) and the solutions are

'_'(E 1B‘H,,]A">—~V3 a3“1 ot (14)
-~ + Vfi_ ib, o 15
— { B; 2A|H;,|A1,>=—2— iby oy Ay (15)
— < B 2B H, 4% = L1, 10, (16)
18
—<Ej 14| Hy | 45,) = "5 b, af Ay a7
- <E; lB‘H“I.Al_ 2”'@“3 oy 7\M (18)
¢ 2
+ - /3, * 19
—<E1,2AfH,,fA1,>=—2—1b2al At (19)
(B 2B ) 7> = — L iaut o (20)

* These are obtained from the standard projection operator method.
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Introducing (13) — (16) and (17) — (20) into expressions (6) and
(7), respectively, we get

o At EEN Y, _ . _
oy = A — Sy B 14 — ib By 24)+

v V3 poip i m-oB (21)
9AB(4,, > B,B) 3% «Fl5 2B)

- A Vgﬁ;k Ay
% =4i + 37, > 5,4

(05 14 + iby By 24) —

V3_ocf 7\M
AE(4,, - E,;B)

(a3E; 1B + ia, E; 2B) (22)

Throughout this paper we shall look at the case where the effective
spin-orbit coupling constant Ay of the d! complex ion in an octahedral
ligand field of trigonal symmetry is much smaller than AE(A4,, — E,4).
We shall consider this approximation valid for every system in which
AE(A,, - E,B) > 102,,.

The basic theory of the Zeeman splitting in a trigonal d' system is
given in Appendix B, expressions (23) and (24) being obtained for g
and g¢,.

g = 2.0023 (23)

by{e, 2411 |ay ) _%(30 2B|1,| an)) (24)
AE(A,, > E,A) AE(A,, - E,B)

go = 20023 —2)/3 ia¥ Ay (

We are now in position to derive the expressions for the g-values
in terms of the CF model. In contrast to MO model, the CF approach
supposes that partly-filled shells are pure d-orbitals. In this regard the

expansion of the integrals (e,|i¢|a1,)' is rather simple and yields

Ce, 24|10, ] ayy > = —i}3b, (25)
¢, 2B\ 1| ay)> = if3a, (26)
Since of = 1 in CF model we can write
gy = 2.0023 (27)
gy = 2.0023 — — 008 D Bai (28)

AE(4,, - E,A) AE(4,, — E,B)

A
* The functions obtained by the operation of I, are given in table A.2 (Appendix A).
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If the six ligand donor atoms to the d* ion are arranged in a nearly
octahedral arrangement, then the symmetry is approximately octabedral

. . . . . 2
in which case common approximation is to assume that a,—=a~ |/ = and

3
by =10 ~ V13 and we arrive at
g = 2.0023 (29)
q = 2.0023 — L — A (30)
AB(4,, > EA)  AE(4, — E,B)

These are the so-called CF expressions for the principal components of
the g-tensor of the d' metal ion in the CF of the octahedral symmetry with
a strong trigonal distortion.

We proceed now to calculate the g-values in terms of the MO model.
We shall calculate some of the matrix elements in detail in order to illus-

trate some interesting points. Consider first the integral (e, ZAﬁ,[aN)
wh ch occurs in expression (24). We want to evaluate (31).

{agdy + bz dy, — Y;‘(D(ga 2-A)| I | “‘lk da — 0"; (D(ala) > (31)

This is expanded as the sum of 6 terms. Integrals of the type (dﬁ, [d> are
straightforward

a30% (| 1o [ day = 0 (32)
boot® (s | Iy din > = —i)/Bbgact (33)

That of the type (D| l'; |d > is also straightforward and leads to metal-
ligand group overlap integral

— oy (D6, 24)| 1, ] dn ) = 1Bk v¥ S(dyer, €,24) (34)

Integrals of the type (d]iﬂ ®)> can be easily calculated using the
Hermitian property of 7,, which may be defined by

SCI)* I, ¢dr = S YIEO*ar (35)
Since in our case all ® and ¢ orbitals are real and 2’: = — i,, we have
identity

SCD* I ydr = ——S oI, ddr (36)

* The correctness of these assumed values will be discussed in detail under ‘“Modification
of the Lower E, Wavefunctions and the g-Values” (See also Ref.%).
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Terms of these types arising from the expansion of the integral (e, 24 [ix |
@, > are given

—ag “;k {dyy| izl O(ay,)) = iaz“;‘ B(@rey aq,) (37)

”“bz% Ay | lxi(p(au)) = 1bz“‘z (8(ds-p, ayy) + VSS (A, ay)]  (38)

The remaining term arising from the expansion of (32) is the sum of the

matrix elements between ligand group orbitals and can be presented in a
more convenient form

(12 'Yz {D(e, 24) | lm( Day)) = °( v5 Re, 24, ) (39)
where R(ea 24, aly) = { D(e, 24)] ix! (I)(afly) pR

The final result for the matrix element (e, 24 | fx[aly > is given by

%
(B, 2411, Ay =—i)f8b, o {1 - %2_ S(dy, ¢, 24) —

2

012012
V3b2°‘ 1

S(dyzy ay0)— V—~ [S(dx’~y’ @) +
(40)
+ V§S(dzz, a)] + % 'Y;k R(e, 24, ay,)}

The expansion of <e, ZBTLxlau) presents no additional complication
and turns out to be

A _ *
Cer 2B Eay > = ifBage { Lo 2 S 0, 2) +

ay

*
b4 )

+ 2= _ S(d,, ¢, 2B =
3“4“1 ( ! )= V o‘1

— [S(dus_p; ay) + (41)

+V3S a,0,)] + o 3 Rle, 2B, ala)}

where R(e, 2B, ay,) = { ®(¢, 2B)| Iy| (ay,)>.
We are now in position to write down final expressions for the g
and g, principal components of the g-tensor. These are

gy = 2.0023 (42)
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*
g, = 2.0023 — 6b% a1 ®us 1% S(d,., 6,24) —
AE(A,, — E,A) b,
@ a;k “;
e l-/—gzr—m—* S(du, aM) - W [S(dx'~—y’7 alv) +
2 Y1 1

”
Gaz OCT 7\M g9

1 —
AB(A, - B, B) { T V3a

+ V38(de, 4,)] } - S(dy, ¢ 2B)+

(43)

byoy x
+ 22 §(dy 0 2B) — sz [8(day, 0yg) +Y38(dn, al,)]}—

V§0€1 V30€1
- 2V§i‘7‘=1‘< 7\M[m;‘ Y;k R(e, 24, ay,) + oy € R(e, 2B, ay,)]

Note that the expressions (42) and (43) are deficient in that they
do not contain CT terms. Kon and Sharpless ®° showed that such terms
could be important in the d! systems. However, many titanium (III) com-
pounds to which our discussion is applicable exhibit CT bands at relati-
vely high energies () 50000 cm—?), so these CT terms are of minor impor-
tance. We shall later discuss such a system : the Ti(H,0)i+ complex ions
in frozen aqueous solution.

DISCUSSION

Our expression (43) for the g; component is rather complicated. It
seems therefore more instructive for our subsequent discussion to sim-
plify this expression as follows:

2 k2 2 k2
Gbg oy }‘M 6@4 o2 Aar

— 2.0023 — — —C 44
9 AR(A,, — H,A) fi AE(4,, — E,B) fe (44)
where f, and f, are
* *
Ya Xt
=1-—-=8(d ze € 24) — — N dwz a -
fl bz ( ¥z Vg ) l/3b20£;k ( s lﬂ)
% %
~ 75 [8(ds_ys, ay,) — V38(dsy ay)] (45)
1
fa=1 —}———E;F——S(d ¢, 2B) — byz3 S(d,., e,2B) —
2 V'§a4 vz Yy V§a4oc1 22y Vg
* —
- ﬁ-— [8(da-yy ) +38(dw, ay,)] (46)
1

? 3, H. Kon and N. E. Suareress, J. Chem. Phys., 42, 906 (1965).
b. H. Ko~ and N. E. Suareress, J. Chem. Phys., 43, 1081 (1965).
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and C is
C = 2/3ia} hlof Y3 R, 24, ay,) + of FR(e, 2B, ay,)] (47

In order to discuss the relative importance of the parameters f,,
foand C in expression (44) we should have available the appropriate MO
expansion coefficients and various overlap integrals. Unfortunately, it
is not possible from the present experimental and theoretical data to give
good numerical values either for the MO parameters describing the chemi-
cal bonding or for the overlap integrals. While detailed theoretical calcu-
lation of the parameters fj, f, and C, i.e. the g, values, for an individual
complex species will not be attempted here we shall try to use the simpler
formula and content ourselves with the Ti(H,0)3+ complex ion in a frozen
aqueous solution for which such formula is applicable.

TITANIUM (III) HEXA-AQUO COMPLEX IONS
IN FROZEN AQUEOUS SOLUTIONS

The titanium (III) halides and titanium (III) sulphate have been
studied both chemically and spectroscopically and are believed to contain
only octahedrally solvated ions, Ti (H,0)3+.10

The broad weak band in the aptical spectrum of the Ti(H,0)3+ com-
Pplex ion is assigned to the 2T, — 2F, transition.® One interesting feature
of the spectrum is the asymmetric character of the visible absorption
band. This band consists of a broad maximum at ~ 20300 cm~! with a
pronounced shoulder at ~17000 cm~*. The splitting is considered to arise
from a nuclear configurational instability in the excited state, i.e. from
the Jahn-Teller effect. The perfect octahedral ion Ti(H,0)§+ cannot be
stable because of the threefold degeneracy of the 2T,, ground state and
a tetragonal distortion is required so that a nondegenerate ground state
exists, i.e. (2B,;). However, the theoretical background of the Jahn-Teller
effect gives no direct information concerning the magnitude of the devia-
tion from actahedral symmetry, or a choice between a static and a dynamic
equilibrium between limiting structures. It is, however, expected that the
splitting of the 2T, ground state will be smaller than that of the excited
tE, state.

Recently, Glebov!! and Premovié and West!? havereparted that rapi-
dly frozen (77 K) strongly acidic aqueous solutions of titanium (IIT) chlo-
ride, bromide, iodide or sulfate provide an identical spectrum from each sam-
ple with g;; =1.99 and g, =1.89. Premovid and West’s 12 analysis indicates

10 a. F. E. ILst and H. HARTMANN, Z. phys. Chem., (Leipzig), 197, 239 (1951).
b. H. HART™MANN, H. L. ScuLirer and K. H. Hansen, Z. Anorg. Chem., 284, 153
(1964).

1 a, V. A. Guesov, Zhur. strukt, Khim., 11, 809 (1970).
b. V. A. Guesov, Doklady Akad. Neuk S.S.S.R., 190, 1378 (1970).

12 P. I. Premovic and P. R. West, Canad. J. Chem., 53, 1630 (1975).
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that the local symmetry of the Ti (I1I) ions providing the signal is trigo-
nal. It was preposed that these ions are Ti(H,0)3+ species * located in
sites in the ice structure subject to strong crystal package forces.

ESR and spectroscopic studies '3 and hexaquo complex ions of the
transition metals of the iron group have convincingly demonstrated that
chemical bonding between the central metal ion and water ligands is
rather ionic. It is reasonable to suppose an analogous situation for the
Ti (H,0)i+ complex ion. Moreover, another argument against the existence
of covalent bonding in the Ti (H,0)i* complex ion is the position of water
in the neuphelauxetic series.’* Those ligands which are known to form
strong covalent bonds, such as Br- and I- have high positions in this
series. Ligands which give rise to rather weak covalency in chemical
bonding, such as F-, have unusually low position in the series. Water,
however, has a position very close to that of the fluoride ion, and this
fact indicates that covalency of the chemical bonding between central
metal ion and water ligands is likely to be rather weak. Since ionic bond-
ing in the Ti (H,0)}* complex ion implies that «f, f, and f, are close to
unity, C is close to zero, a, = a and b, = b. The expressions (42) and (43)
can be written

6b? AM _ 6a? 7‘M
AE(4,, — E,A) _ AE(4, — T, B)

g, = 2.00 — (49)

These expressions are, of course, equivalent to the CF expressions (27)
and (28).

Throughout this discussion, it has been assumed the ground-term
splitting AE(A,, - E,A)>10)y. Gladney and Swalen* have examined
in detail ESR g-values calculated from a 2D term perturbed by a CF—Dy,
potential and spin-orbit coupling. They found that for g-values close to
2, the ratio Ay/AB(A,, — E,A) <0.1()4/8<0.1) in their terminology.
Although their ealculation suffers from all the deficiencies inherent in
their CF approach, which neglects the relative importance of excited state
admixture CF, we may reasonably suppose that this value for the ratio
A/AE(4,, — E,A) is realistic and can meaningfully be used in our dis-
cussion.

As we stated above, very common device in order to reduce the
number of unknowns either in the MO or CF expressions for the g

* Although Ti(III) usually enters compounds into a site of local point symmetry Cg,

the problem can frequently be discussed as one with D;; point symmetry if the CF in the vici-
nity of Ti(1II) is determined primarily by the charges in the six oxygen atoms of water ligands.
13 5. C. J. BaLLHAuseN and H. B. Gray, Inorg. Chem., 1, 111 (1962).
b. R. N. Roeers and G. E. PAkE, J. Chem. Phys., 33, 1107 (1960).
¢. K. DEarMoOND, B. B. Garrerr and H. S. Gurowsky, J. Chem. Phys., 42, 1019
(1964).
d. M. GerrocH and J. R. MiLLER, Progr. Inorg. Chem., 10, 1 (1968).
4 J, E. Huseey, ‘“‘Inorganic Chemistry’’, Harper and Row, New York, 1972, p. 349.
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and g, in a trigonal d' system is to regard the symmetry of this system

approximately octahedral in which case a ~ V_g_ and b ~V_._ However

such an assumption is questionable.

Recently, Gerloch and coworkers,® in their paper dealing with the
magnetic properties of trigonally distorted iron (IT) complexes, have pointed
out the sensitivity of the magnetic properties to small angular departures
from regular octahedral symmetry in trigonal systems. They emphasized
that the analysis of magnetic data based on a constant geometry of the
complex ion in different lattice environments is dangerous, in the trigonal
case in particular, because of peculiarities of the angular functions with
which the magnetic properties are associated. It therefore seems timely
to reconsider the relationship between the a and b coefficients and features
of structure of trigonal @' systems in the light of recent developments
mentioned above.

MODIFICATION OF THE LOWER E;
WAVEFUNCTIONS AND THE g¢-VALUES

In trigonal symmetry the total CF potential may be represented by

Ve AYS+ BYS+0O(YF Yi¥) 50)

for d orbitals, where A, B, and C are independent parameters. We may
relate these parameters to features of structure and metal ion wavefunc-
tions vie the PC model. Instead of a potential parameterized by coeffi-
cients 4, B, and C as in expression (50), this only involves the final matrix
elements parameterized by Dg, Cp and 6. Dg and Cp are fourth-and second
order radial parameters which do not involve the angular distortion para-
meter 0. Thus, the PC model separates distortion and radial parameters
and allows a correlation with geometry of the complex ion.

Although it is inappropriate here to review the PC formalism deve-
loped by Gerloch and coworkers® it is instructive, however, to emphasize
one aspect of their definitions, particularly Dg. Their definition of 10 Dg,
which we use consistently throughout this paper, is identical, practically,
with the B, — T}, energy splitting, in octahedral symmetry. For our cal-
culation we used for the cubic splitting 10 Dg a value of 20 300 cm™?
according to Hartmann and Schlifer.1

Initially, we do not know which value Cp parameter might take
but Gerloch and coworkers 8 suggested that 5 Dg > Op> 2Dq. However,
their detailed analysis did not yield unambiguous results. In our case it
is likely that Cp is at least greater than 4060 cm~! (2Dq) so we ought to
include in our calculation a range of values for this parameter, from 4060
em~! to 10150 em-! (5Dgq).

* Le., using a basis set of orbitals restricted to the cubic 2T,, and 2E; states. "
15 (3, J. BALLHAUSEN, ‘‘Introduction to Ligand Field Theory’’, McGraw-Hill, New York,
1962, p. 68.
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Using a PC—CF model, as developed by Gerloch and eoworkers®,
energy levels were calculated as functions of Op> 4060 cm-! and 8 (and
Dg = 2030 ecm-1).* Some typical results are shown in Figure 3. Analogous
to the iron (II) case the behaviour of CF splittings for trigonal Ti (III)
gystems varies markedly with the magnitude of Cp. We observed that
regardless of the magnitude of Op coefficient a lowest-lying 4,, term is
associated with a ecompressed octahedron (0> 54.75°), similarly a lowest-
lying E, term with an elongated octahedral system (9 < 54.75°). Since our

b)
EgB
8__
IE -
e 1
N E ¢
2 o
> e
S =
W 5
& —8+
G g
W
—~16
L t Lo | | 1
a6° 54° 62 46° 54 62° ¢

Fig. 3. — Energy levels in trigonal symmetry : Cp values are:

a) 10150 cm~-1; — — —~ 6090cm~1; and (b) 8120 cm~1; — — — 4060 cm-1,

experimental g-values are only consistent with an d4,, ground state we
conclude that the octahedron of the Ti(H,0)3* complex ion in frozen
aqueous solutions is trigonally compressed !

Moreover, for a compressed octahedron the ground-term splitting
AB(A,, — E,A) <1540 cm~! (102y) either for Op = 2Dgq throughout
angular range (Figure 3b) or for 6 < ca. 56° regardless that Cp may be
as high as 5Dq (Figure 3a). We note here that our calculation of the split-
ting 27, cubic-field ground term showed that when Cp ~ Dg an E, ground
term persists throughout the angular range irrespective of the sense of
distortion. These facts confirm our initia! assumption that COp >z 2Dq.
On the other hand, since we supposed that the ground-term splitting
AE(A,, - E,A)>1540 em'~ (10)y) in the Ti(H,O)j* complex ion in
frozen aqueous solutions, we shall consider in our g, — calculation only
the cases where this requirement is fulfilled.

*In this calculation we have assumed that there are equal and constant bond lengths.

5 — c. 865



1226 P. 1. PREMOVIC

Perhaps the most important point in our treatment of the g, -values
of the octahedral d' systems with a relatively strong trigonal distortion
is the inclusion of the higher E, into the lower E, wavefunctions via tri-
gonal field mixing. The coefficient @ may be used as an indicator for the
character of the lower E, functions.

Simple perturbation theory suggests that the mixing coefficient m
is given by

e, = t& — mey (51)
where
t:;,—-l/—d 2+V1 (53)
i =1la,+ 12 2, (54)
o V‘ d.p— Vz (55)

are cubic-field quantized basis eigenfunctions; and, m is

— <tékﬂl VDsd l e;) (56)
AB(1f, — 6F)

Figure 4 shows a? plotted as a function of 6 for various Cp values
(Cp> 3090 cm-1) . Analogous to the jron (II) case, all curves intersect

at 0, when a? = —32— (cf. cubic quantized basis eigenfunctions given by

expressions (52) — (55)) as a result of the orthogonality of E, and T,,
in ideal octahedral symmetry. Note that when Cp is 5Dg, a compression
of the octahedron by 5° causes a? to decrease by ca. 55%, and b? (calcu-
lated using the orthonormality condition a2 4 b% = 1) to increase by
ca. 529, ! Such a change in geometry, of course, would cause the same chan-
ges in the contributions to the g, -value of the first (quadratic in b) and the
second (quadratic in @) terms in expression (49). However, it should be
noted that the first term is several times greater than the second term,
since AE(A,, - E,B)> AE(A,, - E,A) (Figure 3) and its contribution
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dominates the g-anisotropy. Consequently, a calculation of the energy
levels (usually the AE(4,, — E,A) transition) from experimental g, -values
based on the CF expression (30) would be, of course, irreconcilable with
the optical or other data (magnetic relaxation, ete.). It has been custo-
mary to rationalize such discrepancies by introducing covalent bonding.
This generally is done with Stevens’ ¢ orbital reduction factors * in the
sense that it is possible to fit any ESR results without difficulty but not
uniquely as the following idealized treatment shows.

The theoretical behaviour of g, values ** for the Ti(H,0)** complex
ion as functions of 6 (> 56°) for three representative values of Cp (> 3Dyg),
is shown in Figure 5. The g, values are clearly dependent on Cp. Notice

.90

170 -

L L I TR N R
T 547 62° © 54 58° $Z ©

Fig. 4. — Angular variation of the Fig. 5. — Angular variation of the g_:
coefficient a?:

Cp values are ; — 10150 cm—1; - - - 8120 cm—!;  Cp values are: —— 10150 cm~1; - - - 8120 em—1;
and ~.-.—, 6090 cm!, and —.—. 6090 cm—1,

particularly, for ca. 56° < 6 < 60° g, values vary rapidly. For example,
with Op = 5Dq, ¢, , value increases from ca. 1.79 to ca. 1.91 as 0 increa-
ses by only 4° from 6 == 56°. It is just this behaviour which is considered
responsible for the g-anisotropy. Thus g, in this system can be signifi-
cantly affected by small angular distortions, provided Cp is a large quan-

18 For a discussion of the significance of orbital reduction parameters in metal complexes
see Ref. 13d.

__* In our case, the orbital reduction factors are:
ky = Vi - aftand by = Y o ¥,
** These are calculated using the expression (49).
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tity. Assuming that the octahedron may only be slightly compressed, say
80— 0,.;< 5° then it can be seen (Figure 5) that only Cp = 5Dg may be
compatible with experimental g, value of 1.89.12 If the value is as
large as 10150 cm~! (i.e. 5Dg) then the effective distortion angle 6 can
be as low as ca. 58.5° and the ground term splitting can be as high as ca.
5000 cm-! (Figure 3b).

Gerloch and coworkers, & using the appropriate PC definitions, pre-
dicted, on the basis of the theoretical calculations of Ballhausen ' and of
Ballhausen and Acomon,® that Cp =~ 5Dg. In the light of this
prediction and the findings in the present work a high value of Cp
seems reasonable. Moreover, observation of the relatively sharp ESR
spectra of the randomly oriented samples of the Ti(H,0)** complex ion
in frozen aqueous solutions at 77 K would, also, indicate an excited
state of a few thousand em above the ground state.l

In spite of the unpaired electron that is present, no ESR signal
is obgerved for the Ti(H,0)3* complex ions in acidic aqueous solutions
at roam temperature. Such an observation is fully consistent with the
octahedral CF symmetry of the ion. In the orbitally degenerate ground
state, 2T,,, the spin angular momentum is cancelled by the residual orbi-
tal angular momentum, leading to the expectation that g ~ 0.1° Although
small distortion (for instance, as a result of the Jahn-Teller effect) can
partially “quench” the orbital angular momentum, spin-lattice relaxa-
tion time is too short providing extremely broad resonance line. However,
in the frozen solution (77 K), the crystal package forces (or similar effects)
may cause a small departure from the regular (or nearly regular) octa-
hedral symmetry in trigonal system* so that the Ti(H;0)g* species will
have now a well-separated orbital singlet leading to the requisite long
spin-lattice relaxation time for the observation of the spectrum. Clearly,
then we are not dealing with a hypothetical temperature dependent pro-
cess of the Ti(H,0, )3+ complex ion that would render its spectrum observa-
ble at 77 K!

The variations of the energy levels (Figure 3), the coefficients a?
(Figure 4) and the g, values (Figure 5) are shown for the Ti(H,0);" com-
plex ion assuming that «f ~ 1, f; = fo~1, and C ~ O; the departures
from these conditions likely to be found in this complex ion would not
change the overall patterns of the graphs and the qualitative and quanti-
tative analyses must be similar.

17 C, J. BALLHAUSEN, Mat. Fys. Medd. Dan. Vid. Selsk., 29, 4 (1954).

18 C, J. BarLeauseN and E. M. AcoMoN, Mat, Fys. Medd. Dan. Vid. Selsk., 31, 2 (1958).

18 A, CarinaToN and A. D. McLAGHLAND, ‘‘Introduction to Magnetic Resonance with
Applications to Chemistry and Chemical Physics’’, Harper and Row, New York, 1967, Chapt.10.

* This point emphasizes the danger of a ready ccmpariscn of data invelving the complex
ions in the same solutions in liquid and frozen states.
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APPENDIX A

Table A.1

A A
Funetions obiained by the operation of the ! - s operator on relevant atomie orbitals

ta2 =g+ ) ([zg 4+ (g2 + D[22+ | 123+ | 122 — yo— Y| lag=) [92.=) |1zz,~) | 122 =)
{(x® — g2+ | 0 —1 0 0 0 0 0 +1/2 +1/2 0
{zy, +} +i 0 0 0 0 0 0 +1/2| —i/2 0
Gz +1 0 0 0 12 0 —1/2 —1/2 0 0 |—iY3j2
(zz, +1 0 0 —1/2 0 0 —1/2 +1/2 0 0 [+V32
<22 +| 0 0 0 0 0 0 0 |+iV32 |—V3j2 0
(a2 — p3,— | 0 0 +i2 | —-1/2 0 0 +i 0 0 0
{xy, —| 0 0 —1/2 ~1/2 0 —1i 0 0 0 0
{xz, —| —i/2 +i/2 0 0 -—iV§72 0 0 0 —ij2 0
(xz, —| +1/2 +i/2 ] 0 |- V32 ] 0 +1/2 0 0
(2 —| 0 0 +i V3720 +V3/2 0 0 0 0 0 0

Table A.2

A
Functions obtained by the operation of ! on relevant atomic orbitals

]dﬁ_,ﬂ) W,,,,) ldyz> Idz;> ld,l)

I — ildﬂz> { |dm> i[dx'-:v’> + 1dgd] ”dw> —iyﬁdvﬂ

APPENDIX B

‘We wish to find the effect of applying a magnetic field upon the doubly degenerate ground
state of d! in a trigonal field of D,g, Dy and C,, symmetries. The perturbation operator for
this is given by

A g A
Hzeeman = Be(l + 2.0023) - H = B, (I, + 2.0023 $,)H, +
1 A A
+§‘ Be [(74 + 2.0023 8,) H_+ (I. + 2.0023 8) H,} B1)

A A A
where 3, is so called the Bohr magneton; Iy = [, & ily and §4+ = §, 4+ i§, are the appro-
priate ‘ladder’ operators; and Hy = Hy -+ iHy.
Since Hzeemay is much smaller than either AE(A;; — EyA) or Ay We can regard it as
a perturbation operator acting on the two degenerate wavefunctions ai; and a3, whose matrix
in the basis of wavefunctions (21) and (22) is as it is given by (B2)
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This matrix is diagonal when the applied external magnetic field is along the z axis (H, =
= H, = 0). The matrix elements are given by

1
< a;';, | Hzeeman | ai",) — E = ? 2.0023 B,H, — E (B3)
{ a3, | Hzeeman | ait, =0 (B4)
{af, | Hzeeman ! a3, > = 0 (B5)
1
iy Hyeman 03, = = — 20023 B H, — E (B6)

The difference in energy of the eigenstates is then

AE(= AEy) = 2.0023 8, H, (B7)

However, when the external magnetic field is along the x (or y) axis the matrix (B2) is non-
diagonal, and the matrix elements are given by

<af,| Hzeeman | ajs> — E = —E (BS)

8 “T Aag

A
—ee—eee (D 141 —
RE(Ay > E,A) (by Ceg 14 Izla39)

(a5, Hzeeman % > =[

ﬁa: Ay

A
—iby (eg24|ly] ayyd )— ‘AE(A,; — E4B)
10 g

(as <eg 1B] 1| ayg) — (B9)

A 1
— ia, (eg 2B| 1] ay, ))] BeH, + 2 -2.0023 B, H,

~Y3 % hy A
{af | Hzeoman| a;) = [KE_(Z:,——_»—ETX) (b {eg1A [z | ayg) +

+ iby (e 241 1] Ayed) V3 e dur
e —————
oSl el o)) AL S BB

(Kag{eg 1B 1; | ayg> + (B10)
A 1
tiay{eg 2B ;| ag)) | e Hy + 3 +2:0023 B H,

{aj; | Hzeepan | 05;> — E = —E (B11)

Solution of the matrix (B2) for this direction gives the energy splitting

A A
AE, (= AE}) = —2)5; o* 2y byleg 24111 angd  aules2 Bllgl arg)
1 AE(Ayy — Ey) AE(A,, = E,

BeH + 2.0023 B,H, (B12)
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Note that terms quadratic in Xy had been

AE (Ayg - EgB) > Ay
If we define g, =(g,) and g (= 9z = gy) as

AE,
" b,
AE,
9L = B.H,
we end up with
g, = 2.0023

A
by {eg2A 1y lazg>

neglected

since AE(A;;—EgA),

(B13)

g1 = 2.0023 — 2V 3ia¥ ay [

AE(Ay, — E, A)

A
aleg2B il layg)
AEA(y—> E¢B)

We observe that the symmetry of the ligand fleld determines the axial symmetry of the
g-tensor and, of course, the directions of its principal components. Moreover, since Ay, AE(Ayq
> EgA) and AE(A;y — E,B) are positive, the g, principal eomponent, of course, is less than

the free electron value, 2.0023.
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